Research Article
BibTex RIS Cite

Naringenin-Based Oximes and Hydrazones: Synthesis, Molecular Docking with Bovine Serum Albumin and Drug-Likeness, Admet Profiling Studies

Year 2025, Volume: 21 Issue: 1, 66 - 74, 26.03.2025
https://doi.org/10.18466/cbayarfbe.1552978

Abstract

Scientists are now increasingly interested in the flavonoid molecule naringenin due to the broad spectrum of biological roles it conducts. Oximes and hydrazones were created employing derivatives of the naringenin-active substances 7-piperidinethoxy and 7-morpholinethoxy to contribute to this research. The ability of the produced compounds to bind to BSA was determined by molecular docking and their potential as medications was assessed using various methods. Based on Lipinski's rule of five, none of the substances were hazardous or carcinogenic, and their blood-brain barrier crossing values were all within permissible limits.

Ethical Statement

There are no ethical issues after the publication of this manuscript.

Supporting Institution

Trakya University

Project Number

TÜBAP 2018/232

Thanks

We gratefully acknowledge the financial support of the scientific research project commission of Trakya University (TÜBAP 2018/232).

References

  • [1]. Formica, J, Regelson, W. 1995. Review of the biology of quercetin and related bioflavonoids. Food and Chemical Toxicology; 33(12):1061-1080. https://doi.org/10.1016/0278-6915(95)00077-1.
  • [2]. Cazarolli, LH, Zanatta, L, Alberton, EH, Bonorino, Figueiredo, MSR, Folador, P, Damazio, RG, et al. 2008. Flavonoids: prospective drug candidates. Mini Reviews in Medicinal Chemistry; 8(13):1429-1440. https://doi.org/10.2174/138955708786369564.
  • [3]. Cushnie, TT, Lamb, AJ. 2011. Recent advances in understanding the antibacterial properties of flavonoids. International Journal of Antimicrobial Agents; 38(2):99-107. https://doi.org/10.1016/j.ijantimicag.2011.02.014.
  • [4]. Miller, E, Schreier, P. Studies on flavonol degradation by peroxidase (donor: H2O2-oxidoreductase, EC 1.11. 1.7): Part 1—Kaempferol. Food Chemistry; 17(2):143-154. https://doi.org/10.1016/0308-8146(85)90083-4.
  • [5]. Wiseman, H. 1996. Dietary influences on membrane function: importance in protection against oxidative damage and disease. The Journal of Nutritional Biochemistry; 7(1):2-15. https://doi.org/10.1016/0955-2863(95)00152-2.
  • [6]. Hollman, P, Hertog, M, Katan, M. 1996. Role of dietary flavonoids in protection against cancer and coronary heart disease. Biochemical Society Transactions; 24:785-789. https://doi.org/10.1042/bst0240785.
  • [7]. Zaim, Ö, Doğanlar, O, Zreigh, MM, Doğanlar, ZB, Özcan, H. 2018. Synthesis, Cancer‐Selective Antiproliferative and Apoptotic Effects of Some (±)‐Naringenin Cycloaminoethyl Derivatives. Chemistry & Biodiversity; 15(7):e1800016. https://doi.org/10.1002/cbdv.201800016
  • [8]. Hodek, P, Trefil, P, Stiborová, M. 2002. Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450. Chemico-Biological Interactions, 139(1):1-21. https://doi.org/10.1016/S0009-2797(01)00285-X.
  • [9]. Ahmadi, A, Hassandarvish, P, Lani, R, Yadollahi, P, Jokar, A, Bakar, SA, et al. 2016. Inhibition of chikungunya virus replication by hesperetin and naringenin. RSC Advances; 6(73):69421-69430. https://doi.org/10.1039/C6RA16640G.
  • [10]. Denaro, M, Smeriglio, A, Trombetta, D. 2021. Antioxidant and anti-inflammatory activity of citrus flavanones mix and its stability after in vitro simulated digestion. Antioxidants; 10(2):140. https://doi.org/10.3390/antiox10020140.
  • [11]. Babu, KS, Babu, TH, Srinivas, P, Kishore, KH, Murthy, U, Rao, JM. 2006. Synthesis and biological evaluation of novel C (7) modified chrysin analogues as antibacterial agents. Bioorganic & Medicinal Chemistry Letters; 16(1):221-2244. https://doi.org/10.1016/j.bmcl.2005.09.009
  • [12]. Zaim, Ö, Doğanlar, O, Doğanlar, ZB, Özcan, H, Zreigh, MM, Kurtdere, K. 2022. Novel synthesis naringenin-benzyl piperazine derivatives prevent glioblastoma invasion by inhibiting the hypoxia-induced IL6/JAK2/STAT3 axis and activating caspase-dependent apoptosis. Bioorganic Chemistry; 129:106209. https://doi.org/10.1016/j.bioorg.2022.106209.
  • [13]. Türkkan, B, Özyürek, M, Bener, M, Güçlü, K, Apak, R. 2012. Synthesis, characterization and antioxidant capacity of naringenin-oxime. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; 85(1):235-240. https://doi.org/10.1016/j.saa.2011.09.066.
  • [14]. Carter, DC, Ho, JX. 1994. Structure of serum albumin. Advances in Protein Chemistr; 45:153-203. https://doi.org/10.1016/S0065-3233(08)60640-3.
  • [15]. Otagiri, M. 2005. A molecular functional study on the interactions of drugs with plasma proteins. Drug Metabolism and Pharmacokinetics, 20(5):309-323. https://doi.org/10.2133/dmpk.20.309.
  • [16]. Zhang, G, Chen, X, Guo, J, Wang, J. 2009.Spectroscopic investigation of the interaction between chrysin and bovine serum albumin. Journal of Molecular Structure; 921(1-3):346-351. https://doi.org/10.1016/j.molstruc.2009.01.036.
  • [17]. Trott, O, Olson, AJ. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry; 31(2):455-461. https://doi.org/10.1002/jcc.21334.
  • [18]. Masand, VH, Rastija, V. 2017. PyDescriptor: A new PyMOL plugin for calculating thousands of easily understandable molecular descriptors. Chemometrics and Intelligent Laboratory Systems 169:12-18. https://doi.org/10.1016/j.chemolab.2017.08.003.
  • [19]. Studio D. 2008. “Discovery studio” Accelrys [21]. 2008. https://discover.3ds.com/discovery-studio-visualizer-download.
  • [20]. Lipinski, CA. 2004. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technologies; 1(4):337-341. https://doi.org/10.1016/j.ddtec.2004.11.007.
  • [21]. Job, P. 1928. Job’s plot analyses for the 2-CG and 3-CG complexes were consistent with 1: 1 stoichiometry. Annalen der Chemie; 9:113-34.
  • [22]. Latif, A. D., Gonda, T., Vágvölgyi, M., Kúsz, N., Kulmány, Á., Ocsovszki, I., Hunyadi, A. 2019. Synthesis and in vitro antitumor activity of naringenin oxime and oxime ether derivatives. International Journal of Molecular Sciences; 20(9), 2184. https://doi.org/10.3390/ijms20092184
  • [23]. Ferreira, R. J., Gajdács, M., Kincses, A., Spengler, G., Dos Santos, D. J., Ferreira, M. J. U. 2020. Nitrogen-containing naringenin derivatives for reversing multidrug resistance in cancer. Bioorganic & Medicinal Chemistry, 28(23), 115798. https://doi.org/10.1016/j.bmc.2020.115798
  • [24]. Yılmaz, AŞ, Uluçam, G. 2023. Novel N-benzyl-2-oxo-1, 2-dihydrofuro [3, 4-d] pyrimidine-3 (4H)-carboxamide as anticancer agent: Synthesis, drug-likeness, ADMET profile, DFT and molecular modelling against EGFR target. Heliyon; e12948. https://doi.org/10.1016/j.heliyon.2023.e12948.
  • [25]. Hu, Y. J., Wang, Y., Ou-Yang, Y., Zhou, J., & Liu, Y. 2010. Characterize the interaction between naringenin and bovine serum albumin using spectroscopic approach. Journal of Luminescence, 130(8), 1394-1399. https://doi.org/10.1016/j.jlumin.2010.02.053
  • [26]. Liu, J., Yang, Z., Cheng, Y., Wu, Q., He, Y., Li, Q., & Cao, X. 2020. Eriodictyol and naringenin inhibit the formation of AGEs: An in vitro and molecular interaction study. Journal of Molecular Recognition, 33(1), e2814. https://doi.org/10.1002/jmr.2814
  • [27]. Daina, A, Michielin, O, Zoete, V. 2017. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports; 7(1):42717. https://www.nature.com/articles/srep42717.
Year 2025, Volume: 21 Issue: 1, 66 - 74, 26.03.2025
https://doi.org/10.18466/cbayarfbe.1552978

Abstract

Project Number

TÜBAP 2018/232

References

  • [1]. Formica, J, Regelson, W. 1995. Review of the biology of quercetin and related bioflavonoids. Food and Chemical Toxicology; 33(12):1061-1080. https://doi.org/10.1016/0278-6915(95)00077-1.
  • [2]. Cazarolli, LH, Zanatta, L, Alberton, EH, Bonorino, Figueiredo, MSR, Folador, P, Damazio, RG, et al. 2008. Flavonoids: prospective drug candidates. Mini Reviews in Medicinal Chemistry; 8(13):1429-1440. https://doi.org/10.2174/138955708786369564.
  • [3]. Cushnie, TT, Lamb, AJ. 2011. Recent advances in understanding the antibacterial properties of flavonoids. International Journal of Antimicrobial Agents; 38(2):99-107. https://doi.org/10.1016/j.ijantimicag.2011.02.014.
  • [4]. Miller, E, Schreier, P. Studies on flavonol degradation by peroxidase (donor: H2O2-oxidoreductase, EC 1.11. 1.7): Part 1—Kaempferol. Food Chemistry; 17(2):143-154. https://doi.org/10.1016/0308-8146(85)90083-4.
  • [5]. Wiseman, H. 1996. Dietary influences on membrane function: importance in protection against oxidative damage and disease. The Journal of Nutritional Biochemistry; 7(1):2-15. https://doi.org/10.1016/0955-2863(95)00152-2.
  • [6]. Hollman, P, Hertog, M, Katan, M. 1996. Role of dietary flavonoids in protection against cancer and coronary heart disease. Biochemical Society Transactions; 24:785-789. https://doi.org/10.1042/bst0240785.
  • [7]. Zaim, Ö, Doğanlar, O, Zreigh, MM, Doğanlar, ZB, Özcan, H. 2018. Synthesis, Cancer‐Selective Antiproliferative and Apoptotic Effects of Some (±)‐Naringenin Cycloaminoethyl Derivatives. Chemistry & Biodiversity; 15(7):e1800016. https://doi.org/10.1002/cbdv.201800016
  • [8]. Hodek, P, Trefil, P, Stiborová, M. 2002. Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450. Chemico-Biological Interactions, 139(1):1-21. https://doi.org/10.1016/S0009-2797(01)00285-X.
  • [9]. Ahmadi, A, Hassandarvish, P, Lani, R, Yadollahi, P, Jokar, A, Bakar, SA, et al. 2016. Inhibition of chikungunya virus replication by hesperetin and naringenin. RSC Advances; 6(73):69421-69430. https://doi.org/10.1039/C6RA16640G.
  • [10]. Denaro, M, Smeriglio, A, Trombetta, D. 2021. Antioxidant and anti-inflammatory activity of citrus flavanones mix and its stability after in vitro simulated digestion. Antioxidants; 10(2):140. https://doi.org/10.3390/antiox10020140.
  • [11]. Babu, KS, Babu, TH, Srinivas, P, Kishore, KH, Murthy, U, Rao, JM. 2006. Synthesis and biological evaluation of novel C (7) modified chrysin analogues as antibacterial agents. Bioorganic & Medicinal Chemistry Letters; 16(1):221-2244. https://doi.org/10.1016/j.bmcl.2005.09.009
  • [12]. Zaim, Ö, Doğanlar, O, Doğanlar, ZB, Özcan, H, Zreigh, MM, Kurtdere, K. 2022. Novel synthesis naringenin-benzyl piperazine derivatives prevent glioblastoma invasion by inhibiting the hypoxia-induced IL6/JAK2/STAT3 axis and activating caspase-dependent apoptosis. Bioorganic Chemistry; 129:106209. https://doi.org/10.1016/j.bioorg.2022.106209.
  • [13]. Türkkan, B, Özyürek, M, Bener, M, Güçlü, K, Apak, R. 2012. Synthesis, characterization and antioxidant capacity of naringenin-oxime. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; 85(1):235-240. https://doi.org/10.1016/j.saa.2011.09.066.
  • [14]. Carter, DC, Ho, JX. 1994. Structure of serum albumin. Advances in Protein Chemistr; 45:153-203. https://doi.org/10.1016/S0065-3233(08)60640-3.
  • [15]. Otagiri, M. 2005. A molecular functional study on the interactions of drugs with plasma proteins. Drug Metabolism and Pharmacokinetics, 20(5):309-323. https://doi.org/10.2133/dmpk.20.309.
  • [16]. Zhang, G, Chen, X, Guo, J, Wang, J. 2009.Spectroscopic investigation of the interaction between chrysin and bovine serum albumin. Journal of Molecular Structure; 921(1-3):346-351. https://doi.org/10.1016/j.molstruc.2009.01.036.
  • [17]. Trott, O, Olson, AJ. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry; 31(2):455-461. https://doi.org/10.1002/jcc.21334.
  • [18]. Masand, VH, Rastija, V. 2017. PyDescriptor: A new PyMOL plugin for calculating thousands of easily understandable molecular descriptors. Chemometrics and Intelligent Laboratory Systems 169:12-18. https://doi.org/10.1016/j.chemolab.2017.08.003.
  • [19]. Studio D. 2008. “Discovery studio” Accelrys [21]. 2008. https://discover.3ds.com/discovery-studio-visualizer-download.
  • [20]. Lipinski, CA. 2004. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technologies; 1(4):337-341. https://doi.org/10.1016/j.ddtec.2004.11.007.
  • [21]. Job, P. 1928. Job’s plot analyses for the 2-CG and 3-CG complexes were consistent with 1: 1 stoichiometry. Annalen der Chemie; 9:113-34.
  • [22]. Latif, A. D., Gonda, T., Vágvölgyi, M., Kúsz, N., Kulmány, Á., Ocsovszki, I., Hunyadi, A. 2019. Synthesis and in vitro antitumor activity of naringenin oxime and oxime ether derivatives. International Journal of Molecular Sciences; 20(9), 2184. https://doi.org/10.3390/ijms20092184
  • [23]. Ferreira, R. J., Gajdács, M., Kincses, A., Spengler, G., Dos Santos, D. J., Ferreira, M. J. U. 2020. Nitrogen-containing naringenin derivatives for reversing multidrug resistance in cancer. Bioorganic & Medicinal Chemistry, 28(23), 115798. https://doi.org/10.1016/j.bmc.2020.115798
  • [24]. Yılmaz, AŞ, Uluçam, G. 2023. Novel N-benzyl-2-oxo-1, 2-dihydrofuro [3, 4-d] pyrimidine-3 (4H)-carboxamide as anticancer agent: Synthesis, drug-likeness, ADMET profile, DFT and molecular modelling against EGFR target. Heliyon; e12948. https://doi.org/10.1016/j.heliyon.2023.e12948.
  • [25]. Hu, Y. J., Wang, Y., Ou-Yang, Y., Zhou, J., & Liu, Y. 2010. Characterize the interaction between naringenin and bovine serum albumin using spectroscopic approach. Journal of Luminescence, 130(8), 1394-1399. https://doi.org/10.1016/j.jlumin.2010.02.053
  • [26]. Liu, J., Yang, Z., Cheng, Y., Wu, Q., He, Y., Li, Q., & Cao, X. 2020. Eriodictyol and naringenin inhibit the formation of AGEs: An in vitro and molecular interaction study. Journal of Molecular Recognition, 33(1), e2814. https://doi.org/10.1002/jmr.2814
  • [27]. Daina, A, Michielin, O, Zoete, V. 2017. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports; 7(1):42717. https://www.nature.com/articles/srep42717.
There are 27 citations in total.

Details

Primary Language English
Subjects Macromolecular and Materials Chemistry (Other)
Journal Section Articles
Authors

Ferhat Melihcan Abay 0000-0002-3783-7539

Hafize Özcan 0000-0002-8031-6755

Ayşen Şuekinci Yılmaz 0000-0002-1928-0204

Ömer Zaim 0000-0002-3472-5611

Project Number TÜBAP 2018/232
Publication Date March 26, 2025
Submission Date September 19, 2024
Acceptance Date January 13, 2025
Published in Issue Year 2025 Volume: 21 Issue: 1

Cite

APA Abay, F. M., Özcan, H., Şuekinci Yılmaz, A., Zaim, Ö. (2025). Naringenin-Based Oximes and Hydrazones: Synthesis, Molecular Docking with Bovine Serum Albumin and Drug-Likeness, Admet Profiling Studies. Celal Bayar University Journal of Science, 21(1), 66-74. https://doi.org/10.18466/cbayarfbe.1552978
AMA Abay FM, Özcan H, Şuekinci Yılmaz A, Zaim Ö. Naringenin-Based Oximes and Hydrazones: Synthesis, Molecular Docking with Bovine Serum Albumin and Drug-Likeness, Admet Profiling Studies. CBUJOS. March 2025;21(1):66-74. doi:10.18466/cbayarfbe.1552978
Chicago Abay, Ferhat Melihcan, Hafize Özcan, Ayşen Şuekinci Yılmaz, and Ömer Zaim. “Naringenin-Based Oximes and Hydrazones: Synthesis, Molecular Docking With Bovine Serum Albumin and Drug-Likeness, Admet Profiling Studies”. Celal Bayar University Journal of Science 21, no. 1 (March 2025): 66-74. https://doi.org/10.18466/cbayarfbe.1552978.
EndNote Abay FM, Özcan H, Şuekinci Yılmaz A, Zaim Ö (March 1, 2025) Naringenin-Based Oximes and Hydrazones: Synthesis, Molecular Docking with Bovine Serum Albumin and Drug-Likeness, Admet Profiling Studies. Celal Bayar University Journal of Science 21 1 66–74.
IEEE F. M. Abay, H. Özcan, A. Şuekinci Yılmaz, and Ö. Zaim, “Naringenin-Based Oximes and Hydrazones: Synthesis, Molecular Docking with Bovine Serum Albumin and Drug-Likeness, Admet Profiling Studies”, CBUJOS, vol. 21, no. 1, pp. 66–74, 2025, doi: 10.18466/cbayarfbe.1552978.
ISNAD Abay, Ferhat Melihcan et al. “Naringenin-Based Oximes and Hydrazones: Synthesis, Molecular Docking With Bovine Serum Albumin and Drug-Likeness, Admet Profiling Studies”. Celal Bayar University Journal of Science 21/1 (March 2025), 66-74. https://doi.org/10.18466/cbayarfbe.1552978.
JAMA Abay FM, Özcan H, Şuekinci Yılmaz A, Zaim Ö. Naringenin-Based Oximes and Hydrazones: Synthesis, Molecular Docking with Bovine Serum Albumin and Drug-Likeness, Admet Profiling Studies. CBUJOS. 2025;21:66–74.
MLA Abay, Ferhat Melihcan et al. “Naringenin-Based Oximes and Hydrazones: Synthesis, Molecular Docking With Bovine Serum Albumin and Drug-Likeness, Admet Profiling Studies”. Celal Bayar University Journal of Science, vol. 21, no. 1, 2025, pp. 66-74, doi:10.18466/cbayarfbe.1552978.
Vancouver Abay FM, Özcan H, Şuekinci Yılmaz A, Zaim Ö. Naringenin-Based Oximes and Hydrazones: Synthesis, Molecular Docking with Bovine Serum Albumin and Drug-Likeness, Admet Profiling Studies. CBUJOS. 2025;21(1):66-74.