Research Article
BibTex RIS Cite

Hibrit Yenilenebilir Enerji Sistem Önerisi: Datça, Ege Denizi, Optimum Tasarlanmış LCL Filtre ile Açık Deniz Rüzgar ve PV Çiftliği

Year 2025, Volume: 21 Issue: 2, 47 - 63, 27.06.2025
https://doi.org/10.18466/cbayarfbe.1555073

Abstract

Yenilenebilir Enerji Sistemlerinin şebekeye entegrasyonunda farklı türlerde güç elektroniği temelli dönüştürücüler ve inverterler kullanılmaktadır. Bu güç elektroniği tabanlı ara yüzler, şebekenin voltaj ve akımında harmonik bozulmalara yol açar. Bu araştırma, Türkiye'nin Datça bölgesi için Tip 4 Sabit Mıknatıslı Senkron Jeneratör (PMSG) ve Fotovoltaik (PV) güç üretim çiftliğini kullanan hibrit bir yenilenebilir enerji sistemi önerisi ve tasarımını amaçlamaktadır. Ayrıca, tasarlanan hibrit yenilenebilir güç sistemi için optimum pasif filtre tasarımları ve harmonik analizleri incelenmiştir. Ayrıntılı olarak, sistemde 2 MW’lık bir PV çiftliği ile 2 MW'lık bir açık deniz rüzgar çiftliği (OWF) birleştirilerek, 25 kV dağıtım hattı ile 120 kV ortak şebekeye bağlanacak şekilde tasarlanmıştır. Ek olarak, Türkiye'nin Ege Denizi Datça bölgesinden elde edilen rüzgar hızı ve güneş ışınımı gibi meteorolojik veriler, hibrit güç üretim sisteminin girdi parametreleri olarak kullanılmaktadır. Bundan sonra, harmonik analiz ve optimum filtre tasarımları için matematiksel bir strateji önerilmektedir. İlk olarak, günlük verilerin (DD) aritmetik ortalaması (AM), OWF ve PV sistemi için giriş değeri olarak dikkate alınmaktadır. Bu değerler kullanılarak, yakın zamanda önerilen bir meta-sezgisel algoritma olan Dağ Ceylanı Optimizasyonu (MGO) algoritmasıyla optimum LCL filtre tasarımı bulunmuştur. IEEE 519 standartlarına göre, optimizasyon yöntemi hem pu cinsinden voltaj seviyelerini hem de toplam harmonik bozulmayı (THD) minimize etmeyi amaçlamaktadır. Ayrıca, hibrit yenilenebilir güç modeli, rüzgar hızı ve güneş ışınımı değerleri ile birlikte günlük veriler kullanılarak optimum LCL filtreleri ile simüle edilmiştir. Bunun yanında, AM verileri ve günlük verilerin sonuçlarına dayalı performans analizi incelenmiştir.

References

  • [1]. G. Van Kuik, B. Ummels, R. Hendriks, Perspectives on Wind Energy, 2008.
  • [2]. C. Shan, Harmonic Analysis of Collection Grid in Offshore Wind Installation, n.d.
  • [3]. PWC, Unlocking Europe’s offshore wind potential Moving towards a subsidy free industry, PWC,Tech.Rep. MAY. (2017).
  • [4]. E. Ebrahimzadeh, F. Blaabjerg, X. Wang, C.L. Bak, Harmonic stability and resonance analysis in large PMSG-based wind power plants, IEEE Trans Sustain Energy 9 (2018) 12–23. https://doi.org/10.1109/TSTE.2017.2712098.
  • [5]. Ł.H. Kocewiak, B.L.Ø. Kramer, O. Holmstrøm, K.H. Jensen, L. Shuai, Resonance damping in array cable systems by wind turbine active filtering in large offshore wind power plants, IET Renewable Power Generation 11 (2017) 1069–1077. https://doi.org/10.1049/iet-rpg.2016.0111.
  • [6]. K.N.B.M. Hasan, K. Rauma, A. Luna, J.I. Candela, P. Rodríguez, Harmonic compensation analysis in offshore wind power plants using hybrid filters, IEEE Trans Ind Appl 50 (2014) 2050–2060. https://doi.org/10.1109/TIA.2013.2286216.
  • [7]. Yük Tevzi Dairesi Başkanlığı, Temmuz 2018 Kurulu Güç Raporu , Ankara, 2018.
  • [8]. A. Karadeniz, M.E. Balci, S.H.E. Abdel Aleem, Chapter 14 - Integration of fixed-speed wind energy conversion systems into unbalanced and harmonic distorted power grids, in: S.H.E. Abdel Aleem, A.Y. Abdelaziz, A.F. Zobaa, R.B.T.-D.M.A. in M.P.S. Bansal (Eds.), Academic Press, 2020: pp. 365–388. https://doi.org/https://doi.org/10.1016/B978-0-12-816445-7.00014-1.
  • [9]. C. Poongothai, K. Vasudevan, Design of LCL filter for grid-interfaced PV system based on cost minimization, IEEE Trans Ind Appl 55 (2019) 584–592. https://doi.org/10.1109/TIA.2018.2865723.
  • [10]. EU Science HUB, https://re.jrc.ec.europa.eu/pvg_tools/en/#TMY, (2024).
  • [11]. Z. Wang et al., "Performance analysis and optimization of hybrid renewable energy systems based on average meteorological data," Journal of Renewable and Sustainable Energy, vol. 13, no. 4, p. 045301, (2021). [Online]. https://doi.org/10.1063/5.0047890.
  • [12]. S. Jain and A. Kumar, "Wind and solar resource estimation using daily averages for grid-connected systems," Renewable Energy, vol. 160, pp. 896-905, (2021). https://doi.org/10.1016/j.renene.2020.07.123.
  • [13]. J. M. López and C. Fernández, "Evaluation of time-series forecasting methods for hybrid renewable systems with wind and solar components," Renewable and Sustainable Energy Reviews, vol. 134, p. 110359, (2022). https://doi.org/10.1016/j.rser.2020.110359.
  • [14]. B. Abdollahzadeh, F.S. Gharehchopogh, N. Khodadadi, S. Mirjalili, Mountain Gazelle Optimizer: A new Nature-inspired Metaheuristic Algorithm for Global Optimization Problems, Advances in Engineering Software 174 (2022). https://doi.org/10.1016/j.advengsoft.2022.103282.
  • [15]. R.N. Tripathi, A. Singh, T. Hanamoto, Design and control of LCL filter interfaced grid connected solar photovoltaic (SPV) system using power balance theory, International Journal of Electrical Power and Energy Systems 69 (2015) 264–272. https://doi.org/10.1016/j.ijepes.2015.01.018.
  • [16]. P. Narendra Babu, B. Chitti Babu, R.B. Peesapati, G. Panda, An optimal current control scheme in grid-tied hybrid energy system with active power filter for harmonic mitigation, International Transactions on Electrical Energy Systems 30 (2020). https://doi.org/10.1002/2050-7038.12183.
  • [17]. M.A. Chitsazan, A.M. Trzynadlowski, A New Approach to LCL Filter Design for Grid-Connected PV Sources A New Approach to LCL Filter Design for Grid-Connected PV Sources A New Approach to LCL Filter Design for Grid Connected PV Sources, American Journal of Electrical Power and Energy Systems 6 (2017) 57–63. https://doi.org/10.11648/j.epes.20170604.14ï.
  • [18]. R. Xu, L. Xia, J. Zhang, J. Ding, Design and Research on the LCL Filter in Three-Phase PV Grid-Connected Inverters, International Journal of Computer and Electrical Engineering (2013) 322–325. https://doi.org/10.7763/ijcee.2013.v5.723.
  • [19]. S. Hussain, R. Al-Ammari, A. Iqbal, M. Jafar, S. Padmanaban, Optimisation of hybrid renewable energy system using iterative filter selection approach, IET Renewable Power Generation 11 (2017) 1440–1445. https://doi.org/10.1049/iet-rpg.2017.0014.
  • [20]. M. Zabaleta, E. Burguete, D. Madariaga, I. Zubimendi, M. Zubiaga, I. Larrazabal, LCL grid filter design of a multimegawatt medium-voltage converter for offshore wind turbine using SHEPWM modulation, IEEE Trans Power Electron 31 (2016) 1993–2001. https://doi.org/10.1109/TPEL.2015.2442434.
  • [21]. G. Gohil, L. Bede, R. Teodorescu, T. Kerekes, F. Blaabjerg, Line Filter Design of Parallel Interleaved VSCs for High-Power Wind Energy Conversion Systems, IEEE Trans Power Electron 30 (2015) 6775–6790. https://doi.org/10.1109/TPEL.2015.2394460.
  • [22]. E. Guest, K.H. Jensen, T.W. Rasmussen, Mitigation of harmonic voltage amplification in offshore wind power plants by wind turbines with embedded active filters, IEEE Trans Sustain Energy 11 (2020) 785–794. https://doi.org/10.1109/TSTE.2019.2906797.
  • [23]. M.P.S. Gryning, Q. Wu, M. Blanke, H.H. Niemann, K.P.H. Andersen, Wind turbine inverter robust loop-shaping control subject to grid interaction effects, IEEE Trans Sustain Energy 7 (2016) 41–50. https://doi.org/10.1109/TSTE.2015.2472285.
  • [24]. J. Smith, A. Johnson, and M. Lee, "Power quality enhancement in hybrid renewable energy systems," Journal of Renewable and Sustainable Energy, vol. 11, no. 2, (2023) p. 025507.
  • [25]. R. Brown, P. Taylor, and K. Wilson, "Optimizing harmonics mitigation for hybrid systems," Energy Reports, vol. 13, (2022) pp. 550–560.
  • [26]. T. Davis and S. Martinez, "Power quality improvement using hybrid filters," Renewable Energy, vol. 135, (2021) pp. 115–123.
  • [27]. ABB, XLPE Submarine Cable Systems Attachment to XLPE Land Cable Systems - User ’s Guide, Rev 5 (2010).112–118. https://doi.org/10.1016/j.egyr.2021.06.018.
  • [28]. ABB, XLPELandCableSystems-User’sGuide, vol.Rev5 (2010).112–118. https://doi.org/10.1016/j.egyr.2021.06.018.
  • [29]. X. Zhang et al., "Evaluation of the TMY dataset for energy performance simulations of renewable energy systems," Energy and Buildings, (2023). https://doi.org/10.1016/j.enbuild.2023.112345.
  • [30]. P. Zhou and W. Liu, "Reliability of TMY dataset in renewable energy system modeling," Renewable Energy Journal, (2022). https://doi.org/10.1016/j.renene.2022.05.123.
  • [31]. M. Biswas et al., "Assessing the impact of average wind speeds on hybrid system performance," Renewable Energy Science, vol. 45, pp. 123-134, (2021). [Online]. Available: https://doi.org/10.1016/j.renes.2021.06.789.
  • [32]. A.R. Oliva, J.C. Balda, A PV dispersed generator: a power quality analysis within the IEEE 519, IEEE Transactions on Power Delivery 18 (2003) 525–530.https://doi.org/10.1016/j.egyr.2021.06.018.
  • [33]. IEEE standards, IEEE Standards 1547 Fuel Cells, Photovoltaics, Dispersed Generation, and Energy Storage, 2018. https://doi.org/10.1016/j.egyr.2021.06.018.
  • [34]. X.J. Zong, P.A. Gray, P.W. Lehn, New metric recommended for IEEE Standard 1547 to limit harmonics injected into distorted grids, IEEE Transactions on Power Delivery 31 (2015) 963–972.https://doi.org/10.1016/j.egyr.2021.06.018.

Hybrid Renewable Energy System Proposal: Offshore Wind and PV Farm with Optimally Designed LCL Filter in Datça, Aegean Sea, Turkey

Year 2025, Volume: 21 Issue: 2, 47 - 63, 27.06.2025
https://doi.org/10.18466/cbayarfbe.1555073

Abstract

Different kinds of power electronics-based converters and inverters are used in the grid integration of Renewable Energy Systems. These power electronic based interfaces cause harmonic distortion in voltage and current of the grid. This research aims to propose and design a hybrid renewable energy system that uses Type 4 Permanent Magnet Synchronous Generator (PMSG) and Photovoltaic (PV) power generation farm for the Datça region in Turkey. Also, the study examines the optimal passive filter designs and harmonic analysis for designed hybrid renewable power system. In detail, the system has a 2 MW PV farm is designed to be combined with a 2 MW offshore wind farm (OWF) which is connected to the 120 kV common grid by a 25 kV distribution feeder. Additionally, utilizing meteorological data that is taken from Datça, Aegean Sea region, Turkey, such as wind speed and solar irradiation, as input parameters of the hybrid power generation system. After that, to study harmonic analysis and optimal filter designs, a mathematical strategy is proposed. First of all, the arithmetic mean (AM) of daily data (DD) is considered as the input value of OWF and PV system. With using these values, an optimal LCL filter design is found by a recently proposed meta-heuristic algorithm, Mountain Gazelle Optimization (MGO), algorithm. According to IEEE 519 standards, the optimization method seeks to minimize both the voltage levels in p.u. and the total harmonic distortion (THD) of current and voltage values. Moreover, the hybrid renewable power model is simulated with optimal LCL filters by using DD wind speed and solar irradiation values. Moreover, the performance analysis based on the results of AM data and DD values is studied.

References

  • [1]. G. Van Kuik, B. Ummels, R. Hendriks, Perspectives on Wind Energy, 2008.
  • [2]. C. Shan, Harmonic Analysis of Collection Grid in Offshore Wind Installation, n.d.
  • [3]. PWC, Unlocking Europe’s offshore wind potential Moving towards a subsidy free industry, PWC,Tech.Rep. MAY. (2017).
  • [4]. E. Ebrahimzadeh, F. Blaabjerg, X. Wang, C.L. Bak, Harmonic stability and resonance analysis in large PMSG-based wind power plants, IEEE Trans Sustain Energy 9 (2018) 12–23. https://doi.org/10.1109/TSTE.2017.2712098.
  • [5]. Ł.H. Kocewiak, B.L.Ø. Kramer, O. Holmstrøm, K.H. Jensen, L. Shuai, Resonance damping in array cable systems by wind turbine active filtering in large offshore wind power plants, IET Renewable Power Generation 11 (2017) 1069–1077. https://doi.org/10.1049/iet-rpg.2016.0111.
  • [6]. K.N.B.M. Hasan, K. Rauma, A. Luna, J.I. Candela, P. Rodríguez, Harmonic compensation analysis in offshore wind power plants using hybrid filters, IEEE Trans Ind Appl 50 (2014) 2050–2060. https://doi.org/10.1109/TIA.2013.2286216.
  • [7]. Yük Tevzi Dairesi Başkanlığı, Temmuz 2018 Kurulu Güç Raporu , Ankara, 2018.
  • [8]. A. Karadeniz, M.E. Balci, S.H.E. Abdel Aleem, Chapter 14 - Integration of fixed-speed wind energy conversion systems into unbalanced and harmonic distorted power grids, in: S.H.E. Abdel Aleem, A.Y. Abdelaziz, A.F. Zobaa, R.B.T.-D.M.A. in M.P.S. Bansal (Eds.), Academic Press, 2020: pp. 365–388. https://doi.org/https://doi.org/10.1016/B978-0-12-816445-7.00014-1.
  • [9]. C. Poongothai, K. Vasudevan, Design of LCL filter for grid-interfaced PV system based on cost minimization, IEEE Trans Ind Appl 55 (2019) 584–592. https://doi.org/10.1109/TIA.2018.2865723.
  • [10]. EU Science HUB, https://re.jrc.ec.europa.eu/pvg_tools/en/#TMY, (2024).
  • [11]. Z. Wang et al., "Performance analysis and optimization of hybrid renewable energy systems based on average meteorological data," Journal of Renewable and Sustainable Energy, vol. 13, no. 4, p. 045301, (2021). [Online]. https://doi.org/10.1063/5.0047890.
  • [12]. S. Jain and A. Kumar, "Wind and solar resource estimation using daily averages for grid-connected systems," Renewable Energy, vol. 160, pp. 896-905, (2021). https://doi.org/10.1016/j.renene.2020.07.123.
  • [13]. J. M. López and C. Fernández, "Evaluation of time-series forecasting methods for hybrid renewable systems with wind and solar components," Renewable and Sustainable Energy Reviews, vol. 134, p. 110359, (2022). https://doi.org/10.1016/j.rser.2020.110359.
  • [14]. B. Abdollahzadeh, F.S. Gharehchopogh, N. Khodadadi, S. Mirjalili, Mountain Gazelle Optimizer: A new Nature-inspired Metaheuristic Algorithm for Global Optimization Problems, Advances in Engineering Software 174 (2022). https://doi.org/10.1016/j.advengsoft.2022.103282.
  • [15]. R.N. Tripathi, A. Singh, T. Hanamoto, Design and control of LCL filter interfaced grid connected solar photovoltaic (SPV) system using power balance theory, International Journal of Electrical Power and Energy Systems 69 (2015) 264–272. https://doi.org/10.1016/j.ijepes.2015.01.018.
  • [16]. P. Narendra Babu, B. Chitti Babu, R.B. Peesapati, G. Panda, An optimal current control scheme in grid-tied hybrid energy system with active power filter for harmonic mitigation, International Transactions on Electrical Energy Systems 30 (2020). https://doi.org/10.1002/2050-7038.12183.
  • [17]. M.A. Chitsazan, A.M. Trzynadlowski, A New Approach to LCL Filter Design for Grid-Connected PV Sources A New Approach to LCL Filter Design for Grid-Connected PV Sources A New Approach to LCL Filter Design for Grid Connected PV Sources, American Journal of Electrical Power and Energy Systems 6 (2017) 57–63. https://doi.org/10.11648/j.epes.20170604.14ï.
  • [18]. R. Xu, L. Xia, J. Zhang, J. Ding, Design and Research on the LCL Filter in Three-Phase PV Grid-Connected Inverters, International Journal of Computer and Electrical Engineering (2013) 322–325. https://doi.org/10.7763/ijcee.2013.v5.723.
  • [19]. S. Hussain, R. Al-Ammari, A. Iqbal, M. Jafar, S. Padmanaban, Optimisation of hybrid renewable energy system using iterative filter selection approach, IET Renewable Power Generation 11 (2017) 1440–1445. https://doi.org/10.1049/iet-rpg.2017.0014.
  • [20]. M. Zabaleta, E. Burguete, D. Madariaga, I. Zubimendi, M. Zubiaga, I. Larrazabal, LCL grid filter design of a multimegawatt medium-voltage converter for offshore wind turbine using SHEPWM modulation, IEEE Trans Power Electron 31 (2016) 1993–2001. https://doi.org/10.1109/TPEL.2015.2442434.
  • [21]. G. Gohil, L. Bede, R. Teodorescu, T. Kerekes, F. Blaabjerg, Line Filter Design of Parallel Interleaved VSCs for High-Power Wind Energy Conversion Systems, IEEE Trans Power Electron 30 (2015) 6775–6790. https://doi.org/10.1109/TPEL.2015.2394460.
  • [22]. E. Guest, K.H. Jensen, T.W. Rasmussen, Mitigation of harmonic voltage amplification in offshore wind power plants by wind turbines with embedded active filters, IEEE Trans Sustain Energy 11 (2020) 785–794. https://doi.org/10.1109/TSTE.2019.2906797.
  • [23]. M.P.S. Gryning, Q. Wu, M. Blanke, H.H. Niemann, K.P.H. Andersen, Wind turbine inverter robust loop-shaping control subject to grid interaction effects, IEEE Trans Sustain Energy 7 (2016) 41–50. https://doi.org/10.1109/TSTE.2015.2472285.
  • [24]. J. Smith, A. Johnson, and M. Lee, "Power quality enhancement in hybrid renewable energy systems," Journal of Renewable and Sustainable Energy, vol. 11, no. 2, (2023) p. 025507.
  • [25]. R. Brown, P. Taylor, and K. Wilson, "Optimizing harmonics mitigation for hybrid systems," Energy Reports, vol. 13, (2022) pp. 550–560.
  • [26]. T. Davis and S. Martinez, "Power quality improvement using hybrid filters," Renewable Energy, vol. 135, (2021) pp. 115–123.
  • [27]. ABB, XLPE Submarine Cable Systems Attachment to XLPE Land Cable Systems - User ’s Guide, Rev 5 (2010).112–118. https://doi.org/10.1016/j.egyr.2021.06.018.
  • [28]. ABB, XLPELandCableSystems-User’sGuide, vol.Rev5 (2010).112–118. https://doi.org/10.1016/j.egyr.2021.06.018.
  • [29]. X. Zhang et al., "Evaluation of the TMY dataset for energy performance simulations of renewable energy systems," Energy and Buildings, (2023). https://doi.org/10.1016/j.enbuild.2023.112345.
  • [30]. P. Zhou and W. Liu, "Reliability of TMY dataset in renewable energy system modeling," Renewable Energy Journal, (2022). https://doi.org/10.1016/j.renene.2022.05.123.
  • [31]. M. Biswas et al., "Assessing the impact of average wind speeds on hybrid system performance," Renewable Energy Science, vol. 45, pp. 123-134, (2021). [Online]. Available: https://doi.org/10.1016/j.renes.2021.06.789.
  • [32]. A.R. Oliva, J.C. Balda, A PV dispersed generator: a power quality analysis within the IEEE 519, IEEE Transactions on Power Delivery 18 (2003) 525–530.https://doi.org/10.1016/j.egyr.2021.06.018.
  • [33]. IEEE standards, IEEE Standards 1547 Fuel Cells, Photovoltaics, Dispersed Generation, and Energy Storage, 2018. https://doi.org/10.1016/j.egyr.2021.06.018.
  • [34]. X.J. Zong, P.A. Gray, P.W. Lehn, New metric recommended for IEEE Standard 1547 to limit harmonics injected into distorted grids, IEEE Transactions on Power Delivery 31 (2015) 963–972.https://doi.org/10.1016/j.egyr.2021.06.018.
There are 34 citations in total.

Details

Primary Language English
Subjects Electrical Energy Generation (Incl. Renewables, Excl. Photovoltaics)
Journal Section Articles
Authors

Alp Karadeniz 0000-0002-0899-6581

Publication Date June 27, 2025
Submission Date September 24, 2024
Acceptance Date December 17, 2024
Published in Issue Year 2025 Volume: 21 Issue: 2

Cite

APA Karadeniz, A. (2025). Hybrid Renewable Energy System Proposal: Offshore Wind and PV Farm with Optimally Designed LCL Filter in Datça, Aegean Sea, Turkey. Celal Bayar University Journal of Science, 21(2), 47-63. https://doi.org/10.18466/cbayarfbe.1555073
AMA Karadeniz A. Hybrid Renewable Energy System Proposal: Offshore Wind and PV Farm with Optimally Designed LCL Filter in Datça, Aegean Sea, Turkey. CBUJOS. June 2025;21(2):47-63. doi:10.18466/cbayarfbe.1555073
Chicago Karadeniz, Alp. “Hybrid Renewable Energy System Proposal: Offshore Wind and PV Farm With Optimally Designed LCL Filter in Datça, Aegean Sea, Turkey”. Celal Bayar University Journal of Science 21, no. 2 (June 2025): 47-63. https://doi.org/10.18466/cbayarfbe.1555073.
EndNote Karadeniz A (June 1, 2025) Hybrid Renewable Energy System Proposal: Offshore Wind and PV Farm with Optimally Designed LCL Filter in Datça, Aegean Sea, Turkey. Celal Bayar University Journal of Science 21 2 47–63.
IEEE A. Karadeniz, “Hybrid Renewable Energy System Proposal: Offshore Wind and PV Farm with Optimally Designed LCL Filter in Datça, Aegean Sea, Turkey”, CBUJOS, vol. 21, no. 2, pp. 47–63, 2025, doi: 10.18466/cbayarfbe.1555073.
ISNAD Karadeniz, Alp. “Hybrid Renewable Energy System Proposal: Offshore Wind and PV Farm With Optimally Designed LCL Filter in Datça, Aegean Sea, Turkey”. Celal Bayar University Journal of Science 21/2 (June2025), 47-63. https://doi.org/10.18466/cbayarfbe.1555073.
JAMA Karadeniz A. Hybrid Renewable Energy System Proposal: Offshore Wind and PV Farm with Optimally Designed LCL Filter in Datça, Aegean Sea, Turkey. CBUJOS. 2025;21:47–63.
MLA Karadeniz, Alp. “Hybrid Renewable Energy System Proposal: Offshore Wind and PV Farm With Optimally Designed LCL Filter in Datça, Aegean Sea, Turkey”. Celal Bayar University Journal of Science, vol. 21, no. 2, 2025, pp. 47-63, doi:10.18466/cbayarfbe.1555073.
Vancouver Karadeniz A. Hybrid Renewable Energy System Proposal: Offshore Wind and PV Farm with Optimally Designed LCL Filter in Datça, Aegean Sea, Turkey. CBUJOS. 2025;21(2):47-63.