Research Article
BibTex RIS Cite

The modified sub equation method to Kolmogorov-Petrovskii-Piskunov equation

Year 2025, Volume: 21 Issue: 3, 137 - 144, 26.09.2025
https://doi.org/10.18466/cbayarfbe.1575598

Abstract

The Kolmogorov-Petrovskii-Piskunov (KPP) equation (eq.) can be considered a generalized form of the Fisher, Huxley and Fitzhugh-Nagumo Eqs., which have applications in chemistry, biology and physics. In this article, the nonlinear KPP eq. is discussed with the modified sub equation method, one of the analytical methods. With the successfully implemented method, trigonometric and hyperbolic solutions of the KPP eq. are presented. 3 D, 2 D and contour graphics are presented by giving arbitrary values to the parameters in the solutions produced. Also, the attained results are compared with the existing solutions in the literature. The effectiveness and applicability of the applied method to nonlinear differential eqs. (NPDEs) are examined in this paper.

References

  • [1]. Yang, L., & Gao, B. (2024). The nondegenerate solitons solutions for the generalized coupled higher-order nonlinear Schrödinger equations with variable coefficients via the Hirota bilinear method. Chaos, Solitons & Fractals; 184: 115009.
  • [2]. Zayed, E. M., & Gepreel, K. A. (2009). Some applications of the G′ G-expansion method to non-linear partial differential equations. Applied Mathematics and Computation; 212(1): 1-13.
  • [3]. Rehman, S. U., Yusuf, A., Bilal, M., Younas, U., Younis, M., & Sulaiman, T. A. (2020). Application of (G¹/G²)-expansion method to microstructured solids, magneto-electro-elastic circular rod and (2+1)-dimensional nonlinear electrical lines. Mathematics in Engineering, Science & Aerospace (MESA); 11(4).
  • [4]. Kumar, D., Seadawy, A. R., & Joardar, A. K. (2018). Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology. Chinese journal of physics; 56(1): 75-85.
  • [5]. Su-Ping, Q., & Li-Xin, T. (2007). Modification of the Clarkson–Kruskal direct method for a coupled system. Chinese Physics Letters; 24(10): 2720.
  • [6]. Darzi, R., Mohammadzade, B., Mousavi, S., & Beheshti, R. (2013). Sumudu transform method for solving fractional differential equations and fractional diffusion-wave equation. J. Math. Comput. Sci; 6(1): 79-84.
  • [7]. Yokus, A., & Isah, M. A. (2022). Investigation of internal dynamics of soliton with the help of traveling wave soliton solution of Hamilton amplitude equation. Optical and Quantum Electronics; 54(8): 528.
  • [8]. Ali, K. K., Osman, M. S., & Abdel-Aty, M. (2020). New optical solitary wave solutions of Fokas-Lenells equation in optical fiber via Sine-Gordon expansion method. Alexandria Engineering Journal; 59(3): 1191-1196.
  • [9]. Malik, S., Kumar, S., Akbulut, A., & Rezazadeh, H. (2023). Some exact solitons to the (2+ 1)-dimensional Broer–Kaup–Kupershmidt system with two different methods. Optical and Quantum Electronics; 55(14): 1215.
  • [10]. Rabie, W. B., Ahmed, H. M., Hashemi, M. S., Mirzazadeh, M., & Bayram, M. (2024). Generating optical solitons in the extended (3+ 1)-dimensional nonlinear Kudryashov’s equation using the extended f-expansion method. Optical and Quantum Electronics; 56(5): 894.
  • [11]. Subaşı, M., & Durur, H. (2023). Refraction simulation of nonlinear wave for Shallow Water-Like equation. Celal Bayar University Journal of Science; 19(1): 47-52.
  • [12]. Ali, K. K., Tarla, S., Ali, M. R., Yusuf, A., & Yilmazer, R. (2023). Consistent solitons in the plasma and optical fiber for complex Hirota-dynamical model. Results in Physics; 47: 106393.
  • [13]. Durur, H., Arslantürk, R., & Aydın, A. (2024). Mathematical analysis of electric signal transmission in semi-conductor materials. Modern Physics Letters B; 38(17): 2450132.
  • [14]. Kamel, N. M., Ahmed, H. M., & Rabie, W. B. (2024). Retrieval of soliton solutions for 4th-order (2+ 1)-dimensional Schrödinger equation with higher-order odd and even terms by modified Sardar sub-equation method. Ain Shams Engineering Journal; 15(7): 102808.
  • [15]. Mochizuki, K., & Shishmarev, I. A. (2001). Large Time Asymptotics of Small Solutions to Generalized Kolmogorov-Petrovskii-Piskunov Equation. Funkcialaj Ekvacioj Serio Internacia; 44(1): 99-118.
  • [16]. Pikulin, S. V. (2018). Traveling-wave solutions of the Kolmogorov–Petrovskii–Piskunov equation. Computational Mathematics and Mathematical Physics; 58: 230-237.
  • [17]. Feng, J., Li, W. and Wan, Q., Using G′ G-expansion method to seek the traveling wave solution of Kolmogorov–Petrovskii–Piskunov equation. Applied Mathematics and Computation; 217(12): 5860-5865, (2011).
  • [18]. Zayed, E. M. E. and Ibrahim, S. H., Exact solutions of Kolmogorov-Petrovskii-Piskunov equation using the modified simple equation method. Acta Mathematicae Applicatae Sinica, English Series; 30(3): 749-754, (2014).
  • [19]. Hariharan, G. (2013). The homotopy analysis method applied to the Kolmogorov–Petrovskii–Piskunov (KPP) and fractional KPP equations. Journal of Mathematical Chemistry; 51(3): 992-1000.
  • [20]. Unal, A. O. On the Kolmogorov–Petrovskii–Piskunov equation. Commun. Fac. Sci. Univ. Ank. Series A; 1, (2013).
  • [21]. Rouhparvar, H., Travelling wave solution of the Kolmogorov-Petrovskii-Piskunov equation by the first integral method. Bulletin of the Malaysian Mathematical Sciences Society; 37(1), (2014).
  • [22]. Demiray, Ş. T., & Duman, S. (2021). The modified trial equation method to the (2+1)-dimensional Broer-Kaup-Kupershmidt equation and Kolmogorov-Petrovskii-Piskunov equation. Balıkesir University Journal of the Institute of Science; 23(2): 673-684.
  • [23]. Durur, H., & Yokuş, A. (2020). Analytical solutions of Kolmogorov–Petrovskii–Piskunov equation. Balıkesir University Journal of the Institute of Science; 22(2): 628-636.
  • [24]. Duran, S., Yokuş, A., Durur, H., & Kaya, D. (2021). Refraction simulation of internal solitary waves for the fractional Benjamin–Ono equation in fluid dynamics. Modern Physics Letters B; 35(26): 2150363.
  • [25]. Wongsaijai, B., Aydemir, T., Ak, T., & Dhawan, S. (2024). Analytical and numerical techniques for initial‐boundary value problems of Kolmogorov–Petrovsky–Piskunov equation. Numerical Methods for Partial Differential Equations; 40(1): e22693.

Year 2025, Volume: 21 Issue: 3, 137 - 144, 26.09.2025
https://doi.org/10.18466/cbayarfbe.1575598

Abstract

References

  • [1]. Yang, L., & Gao, B. (2024). The nondegenerate solitons solutions for the generalized coupled higher-order nonlinear Schrödinger equations with variable coefficients via the Hirota bilinear method. Chaos, Solitons & Fractals; 184: 115009.
  • [2]. Zayed, E. M., & Gepreel, K. A. (2009). Some applications of the G′ G-expansion method to non-linear partial differential equations. Applied Mathematics and Computation; 212(1): 1-13.
  • [3]. Rehman, S. U., Yusuf, A., Bilal, M., Younas, U., Younis, M., & Sulaiman, T. A. (2020). Application of (G¹/G²)-expansion method to microstructured solids, magneto-electro-elastic circular rod and (2+1)-dimensional nonlinear electrical lines. Mathematics in Engineering, Science & Aerospace (MESA); 11(4).
  • [4]. Kumar, D., Seadawy, A. R., & Joardar, A. K. (2018). Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology. Chinese journal of physics; 56(1): 75-85.
  • [5]. Su-Ping, Q., & Li-Xin, T. (2007). Modification of the Clarkson–Kruskal direct method for a coupled system. Chinese Physics Letters; 24(10): 2720.
  • [6]. Darzi, R., Mohammadzade, B., Mousavi, S., & Beheshti, R. (2013). Sumudu transform method for solving fractional differential equations and fractional diffusion-wave equation. J. Math. Comput. Sci; 6(1): 79-84.
  • [7]. Yokus, A., & Isah, M. A. (2022). Investigation of internal dynamics of soliton with the help of traveling wave soliton solution of Hamilton amplitude equation. Optical and Quantum Electronics; 54(8): 528.
  • [8]. Ali, K. K., Osman, M. S., & Abdel-Aty, M. (2020). New optical solitary wave solutions of Fokas-Lenells equation in optical fiber via Sine-Gordon expansion method. Alexandria Engineering Journal; 59(3): 1191-1196.
  • [9]. Malik, S., Kumar, S., Akbulut, A., & Rezazadeh, H. (2023). Some exact solitons to the (2+ 1)-dimensional Broer–Kaup–Kupershmidt system with two different methods. Optical and Quantum Electronics; 55(14): 1215.
  • [10]. Rabie, W. B., Ahmed, H. M., Hashemi, M. S., Mirzazadeh, M., & Bayram, M. (2024). Generating optical solitons in the extended (3+ 1)-dimensional nonlinear Kudryashov’s equation using the extended f-expansion method. Optical and Quantum Electronics; 56(5): 894.
  • [11]. Subaşı, M., & Durur, H. (2023). Refraction simulation of nonlinear wave for Shallow Water-Like equation. Celal Bayar University Journal of Science; 19(1): 47-52.
  • [12]. Ali, K. K., Tarla, S., Ali, M. R., Yusuf, A., & Yilmazer, R. (2023). Consistent solitons in the plasma and optical fiber for complex Hirota-dynamical model. Results in Physics; 47: 106393.
  • [13]. Durur, H., Arslantürk, R., & Aydın, A. (2024). Mathematical analysis of electric signal transmission in semi-conductor materials. Modern Physics Letters B; 38(17): 2450132.
  • [14]. Kamel, N. M., Ahmed, H. M., & Rabie, W. B. (2024). Retrieval of soliton solutions for 4th-order (2+ 1)-dimensional Schrödinger equation with higher-order odd and even terms by modified Sardar sub-equation method. Ain Shams Engineering Journal; 15(7): 102808.
  • [15]. Mochizuki, K., & Shishmarev, I. A. (2001). Large Time Asymptotics of Small Solutions to Generalized Kolmogorov-Petrovskii-Piskunov Equation. Funkcialaj Ekvacioj Serio Internacia; 44(1): 99-118.
  • [16]. Pikulin, S. V. (2018). Traveling-wave solutions of the Kolmogorov–Petrovskii–Piskunov equation. Computational Mathematics and Mathematical Physics; 58: 230-237.
  • [17]. Feng, J., Li, W. and Wan, Q., Using G′ G-expansion method to seek the traveling wave solution of Kolmogorov–Petrovskii–Piskunov equation. Applied Mathematics and Computation; 217(12): 5860-5865, (2011).
  • [18]. Zayed, E. M. E. and Ibrahim, S. H., Exact solutions of Kolmogorov-Petrovskii-Piskunov equation using the modified simple equation method. Acta Mathematicae Applicatae Sinica, English Series; 30(3): 749-754, (2014).
  • [19]. Hariharan, G. (2013). The homotopy analysis method applied to the Kolmogorov–Petrovskii–Piskunov (KPP) and fractional KPP equations. Journal of Mathematical Chemistry; 51(3): 992-1000.
  • [20]. Unal, A. O. On the Kolmogorov–Petrovskii–Piskunov equation. Commun. Fac. Sci. Univ. Ank. Series A; 1, (2013).
  • [21]. Rouhparvar, H., Travelling wave solution of the Kolmogorov-Petrovskii-Piskunov equation by the first integral method. Bulletin of the Malaysian Mathematical Sciences Society; 37(1), (2014).
  • [22]. Demiray, Ş. T., & Duman, S. (2021). The modified trial equation method to the (2+1)-dimensional Broer-Kaup-Kupershmidt equation and Kolmogorov-Petrovskii-Piskunov equation. Balıkesir University Journal of the Institute of Science; 23(2): 673-684.
  • [23]. Durur, H., & Yokuş, A. (2020). Analytical solutions of Kolmogorov–Petrovskii–Piskunov equation. Balıkesir University Journal of the Institute of Science; 22(2): 628-636.
  • [24]. Duran, S., Yokuş, A., Durur, H., & Kaya, D. (2021). Refraction simulation of internal solitary waves for the fractional Benjamin–Ono equation in fluid dynamics. Modern Physics Letters B; 35(26): 2150363.
  • [25]. Wongsaijai, B., Aydemir, T., Ak, T., & Dhawan, S. (2024). Analytical and numerical techniques for initial‐boundary value problems of Kolmogorov–Petrovsky–Piskunov equation. Numerical Methods for Partial Differential Equations; 40(1): e22693.
There are 25 citations in total.

Details

Primary Language English
Subjects Partial Differential Equations, Applied Mathematics (Other)
Journal Section Articles
Authors

Hülya Durur 0000-0002-9297-6873

Publication Date September 26, 2025
Submission Date October 29, 2024
Acceptance Date April 14, 2025
Published in Issue Year 2025 Volume: 21 Issue: 3

Cite

APA Durur, H. (2025). The modified sub equation method to Kolmogorov-Petrovskii-Piskunov equation. Celal Bayar University Journal of Science, 21(3), 137-144. https://doi.org/10.18466/cbayarfbe.1575598
AMA Durur H. The modified sub equation method to Kolmogorov-Petrovskii-Piskunov equation. CBUJOS. September 2025;21(3):137-144. doi:10.18466/cbayarfbe.1575598
Chicago Durur, Hülya. “The Modified Sub Equation Method to Kolmogorov-Petrovskii-Piskunov Equation”. Celal Bayar University Journal of Science 21, no. 3 (September 2025): 137-44. https://doi.org/10.18466/cbayarfbe.1575598.
EndNote Durur H (September 1, 2025) The modified sub equation method to Kolmogorov-Petrovskii-Piskunov equation. Celal Bayar University Journal of Science 21 3 137–144.
IEEE H. Durur, “The modified sub equation method to Kolmogorov-Petrovskii-Piskunov equation”, CBUJOS, vol. 21, no. 3, pp. 137–144, 2025, doi: 10.18466/cbayarfbe.1575598.
ISNAD Durur, Hülya. “The Modified Sub Equation Method to Kolmogorov-Petrovskii-Piskunov Equation”. Celal Bayar University Journal of Science 21/3 (September2025), 137-144. https://doi.org/10.18466/cbayarfbe.1575598.
JAMA Durur H. The modified sub equation method to Kolmogorov-Petrovskii-Piskunov equation. CBUJOS. 2025;21:137–144.
MLA Durur, Hülya. “The Modified Sub Equation Method to Kolmogorov-Petrovskii-Piskunov Equation”. Celal Bayar University Journal of Science, vol. 21, no. 3, 2025, pp. 137-44, doi:10.18466/cbayarfbe.1575598.
Vancouver Durur H. The modified sub equation method to Kolmogorov-Petrovskii-Piskunov equation. CBUJOS. 2025;21(3):137-44.