Research Article
BibTex RIS Cite

Year 2025, Volume: 21 Issue: 3, 154 - 165, 26.09.2025
https://doi.org/10.18466/cbayarfbe.1596292

Abstract

References

  • [1] Baibich, M. N., Broto, J. M., Fert, A., Van Dau, F. N., Petroff, F., Etienne, P., ... & Chazelas, J. (1988). Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices. Physical review letters, 61(21), 2472.
  • [2] Binasch, G., Grünberg, P., Saurenbach, F., & Zinn, W. (1989). Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Physical review B, 39(7), 4828.
  • [3] Žutić, I., Fabian, J., & Sarma, S. D. (2004). Spintronics: Fundamentals and applications. Reviews of modern physics, 76(2), 323.
  • [4] Hirohata, A., Yamada, K., Nakatani, Y., Prejbeanu, I. L., Diény, B., Pirro, P., & Hillebrands, B. (2020). Review on spintronics: Principles and device applications. Journal of Magnetism and Magnetic Materials, 509, 166711.
  • [5] Parkin, S. S., Kaiser, C., Panchula, A., Rice, P. M., Hughes, B., Samant, M., & Yang, S. H. (2004). Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature materials, 3(12), 862-867.
  • [6] Dieny, B., Sousa, R. C., Herault, J., Papusoi, C., Prenat, G., Ebels, U., ... & Prejbeanu, I. L. (2010). Spin-transfer effect and its use in spintronic components. International Journal of Nanotechnology, 7(4-8), 591-614.
  • [7] Kent, A. D., & Worledge, D. C. (2015). A new spin on magnetic memories. Nature nanotechnology, 10(3), 187-191.
  • [8] Shiota, D., Tsuneta, S., Shimojo, M., Sako, N., Suárez, D. O., & Ishikawa, R. (2012). Polar field reversal observations with Hinode. The Astrophysical Journal, 753(2), 157.
  • [9] Ikeda, M., Aleksic, B., Kirov, G., Kinoshita, Y., Yamanouchi, Y., Kitajima, T., ... & Iwata, N. (2010). Copy number variation in schizophrenia in the Japanese population. Biological psychiatry, 67(3), 283-286.
  • [10] Jungwirth, T., Sinova, J., Manchon, A., Marti, X., Wunderlich, J., & Felser, C. (2018). The multiple directions of antiferromagnetic spintronics. Nature Physics, 14(3), 200-203.
  • [11] Šmejkal, L., Sinova, J., & Jungwirth, T. (2022). Beyond conventional ferromagnetism and antiferromagnetism: A phase with nonrelativistic spin and crystal rotation symmetry. Physical Review X, 12(3), 031042.
  • [12] Avsar, P., Moore, Z., Patton, D., O'Connor, T., Budri, A. M., & Nugent, L. (2020). Repositioning for preventing pressure ulcers: a systematic review and meta-analysis. Journal of Wound Care, 29(9), 496-508.
  • [13] Gibertini, M., Koperski, M., Morpurgo, A. F., & Novoselov, K. S. (2019). Magnetic 2D materials and heterostructures. Nature nanotechnology, 14(5), 408-419.
  • [14] Dieny, B., Prejbeanu, I. L., Garello, K., Gambardella, P., Freitas, P., Lehndorff, R., ... & Bortolotti, P. (2020). Opportunities and challenges for spintronics in the microelectronics industry. Nature Electronics, 3(8), 446-459.
  • [15] Chen, W., Liu, W., Geng, Y., Brown, M. T., Gao, C., & Wu, R. (2017). Recent progress on emergy research: A bibliometric analysis. Renewable and Sustainable Energy Reviews, 73, 1051-1060.
  • [16] Zhang, Y., Xu, H., Feng, J., Wu, H., Yu, G., & Han, X. (2021). Magnetic two-dimensional van der Waals materials for spintronic devices. Chinese Physics B, 30(11), 118504.
  • [17] Wang, S. X., Sun, N. X., Yamaguchi, M., & Yabukami, S. (2000). Properties of a new soft magnetic material. Nature, 407(6801), 150-151.
  • [18] Mishra, R., & Yang, H. (2020). Emerging spintronics phenomena and applications. IEEE Transactions on Magnetics, 57(1), 1-34.
  • [19] Cao, Y., Xing, G., Lin, H., Zhang, N., Zheng, H., & Wang, K. (2020). Prospect of spin-orbitronic devices and their applications. IScience, 23(10).
  • [20] Wolf, S. A., Chtchelkanova, A. Y., & Treger, D. M. (2006). Spintronics—A retrospective and perspective. IBM journal of research and development, 50(1), 101-110.
  • [21] Kang, S. H., & Lee, K. (2013). Emerging materials and devices in spintronic integrated circuits for energy-smart mobile computing and connectivity. Acta Materialia, 61(3), 952-973.
  • [22] Aksu, P. (2024). Strong perpendicular magnetic anisotropy and interlayer coupling in CoRh/Rh/Fe multilayers tailored by Rh spacer layer thickness. Physica B: Condensed Matter, 676, 415662.
  • [23] Itoh, H., & Inoue, J. I. (2006). Theory of tunnel magnetoresistance. Journal of the Magnetics Society of Japan, 30(1), 1-37.
  • [24] Wolf, S. A., Awschalom, D. D., Buhrman, R. A., Daughton, J. M., von Molnár, V. S., Roukes, M. L., ... & Treger, D. M. (2001). Spintronics: a spin-based electronics vision for the future. science, 294(5546), 1488-1495.
  • [25] Adeyeye, A. O., & Shimon, G. (2015). Growth and characterization of magnetic thin film and nanostructures. In Handbook of surface science (Vol. 5, pp. 1-41). North-Holland.
  • [26] Zheng, X. Y., Channa, S., Riddiford, L. J., Wisser, J. J., Mahalingam, K., Bowers, C. T., ... & Suzuki, Y. (2023). Ultra-thin lithium aluminate spinel ferrite films with perpendicular magnetic anisotropy and low damping. Nature communications, 14(1), 4918.
  • [27] Teichert, N., Kucza, D., Yildirim, O., Yuzuak, E. R. C. Ü. M. E. N. T., Dincer, I., Behler, A., ... & Hütten, A. (2015). Structure and giant inverse magnetocaloric effect of epitaxial Ni-Co-Mn-Al films. Physical Review B, 91(18), 184405.
  • [28] Tondra, M., Wang, D., & Qian, Z. (2002). Device applications using spin dependent tunneling and nanostructured materials. In Nanostructured Magnetic Materials and Their Applications (pp. 278-289). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • [29] Chang, L., Wang, M., Liu, L., Luo, S., & Xiao, P. (2014). A brief introduction to giant magnetoresistance. arXiv preprint arXiv:1412.7691.
  • [30] Ritzinger, P., & Výborný, K. (2023). Anisotropic magnetoresistance: materials, models and applications. Royal Society Open Science, 10(10), 230564.
  • [31] Tudu, B., & Tiwari, A. (2017). Recent developments in perpendicular magnetic anisotropy thin films for data storage applications. Vacuum, 146, 329-341.
  • [32] Płóciennik, P., Zawadzka, A., Frankowski, R., & Korcala, A. (2016, July). Selected methods of thin films deposition and their applications. In 2016 18th International Conference on Transparent Optical Networks (ICTON) (pp. 1-4). IEEE.
  • [33] Zhang, W., & Krishnan, K. M. (2014). Epitaxial patterning of thin-films: conventional lithographies and beyond. Journal of Micromechanics and Microengineering, 24(9), 093001.
  • [34] Gibertini, M., Koperski, M., Morpurgo, A. F., & Novoselov, K. S. (2019). Magnetic 2D materials and heterostructures. Nature nanotechnology, 14(5), 408-419.
  • [35] Barla, P., Joshi, V. K., & Bhat, S. (2021). Spintronic devices: a promising alternative to CMOS devices. Journal of Computational Electronics, 20(2), 805-837.
  • [36] Egeloff, W. F., Chen, P. J., Powell, C. J., Parks, D., McMichael, R. D., Judy, J. H., ... & Daughton, J. M. (1998, June). Optimizing GMR spin valves: The outlook for improved properties. In Seventh Biennial IEEE International Nonvolatile Memory Technology Conference. Proceedings (Cat. No. 98EX141) (pp. 34-37). IEEE.
  • [37] Özkal, B., Kazan, S., Karataş, Ö., Ekinci, G., Arda, L., & Rameev, B. Z. (2023). Fabrication and characterization of TiOx based single-cell memristive devices. Materials Research Express, 10(12), 125901.

Advances in Magnetic Thin Films for Spintronic Devices: A Bibliometric and Thematic Analysis

Year 2025, Volume: 21 Issue: 3, 154 - 165, 26.09.2025
https://doi.org/10.18466/cbayarfbe.1596292

Abstract

This bibliometric analysis examines research trends in magnetic thin films for spintronic applications from 2001 to 2025, based on 562 documents retrieved from the Web of Science. Our analysis reveals that three key themes dominate the field: magnetoresistance (56 occurrences), magnetic properties (55 occurrences), and thin films (55 occurrences). Research focus has evolved from fundamental studies on giant magnetoresistance and tunnel junctions (2005-2012) to practical applications involving room-temperature ferromagnetism and epitaxial growth (2012-2017), and finally to advanced topics such as anisotropy, spin dynamics, and ferromagnetic resonance (2018-2023). Citation analysis identifies the USA (4151 citations), China (2300 citations), and Japan (1512 citations) as the geographical leaders. At the same time, Nanjing University (71 articles), University of Tokyo (55 articles), and Fudan University (42 articles) are the most productive institutions. Emerging research areas include 2D materials (e.g., graphene and MoS₂) and room-temperature spintronic functionality, which have seen a 65% increase in publications since 2018. This analysis provides a quantitative foundation for advancing spintronic technologies through targeted interdisciplinary approaches.

References

  • [1] Baibich, M. N., Broto, J. M., Fert, A., Van Dau, F. N., Petroff, F., Etienne, P., ... & Chazelas, J. (1988). Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices. Physical review letters, 61(21), 2472.
  • [2] Binasch, G., Grünberg, P., Saurenbach, F., & Zinn, W. (1989). Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Physical review B, 39(7), 4828.
  • [3] Žutić, I., Fabian, J., & Sarma, S. D. (2004). Spintronics: Fundamentals and applications. Reviews of modern physics, 76(2), 323.
  • [4] Hirohata, A., Yamada, K., Nakatani, Y., Prejbeanu, I. L., Diény, B., Pirro, P., & Hillebrands, B. (2020). Review on spintronics: Principles and device applications. Journal of Magnetism and Magnetic Materials, 509, 166711.
  • [5] Parkin, S. S., Kaiser, C., Panchula, A., Rice, P. M., Hughes, B., Samant, M., & Yang, S. H. (2004). Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature materials, 3(12), 862-867.
  • [6] Dieny, B., Sousa, R. C., Herault, J., Papusoi, C., Prenat, G., Ebels, U., ... & Prejbeanu, I. L. (2010). Spin-transfer effect and its use in spintronic components. International Journal of Nanotechnology, 7(4-8), 591-614.
  • [7] Kent, A. D., & Worledge, D. C. (2015). A new spin on magnetic memories. Nature nanotechnology, 10(3), 187-191.
  • [8] Shiota, D., Tsuneta, S., Shimojo, M., Sako, N., Suárez, D. O., & Ishikawa, R. (2012). Polar field reversal observations with Hinode. The Astrophysical Journal, 753(2), 157.
  • [9] Ikeda, M., Aleksic, B., Kirov, G., Kinoshita, Y., Yamanouchi, Y., Kitajima, T., ... & Iwata, N. (2010). Copy number variation in schizophrenia in the Japanese population. Biological psychiatry, 67(3), 283-286.
  • [10] Jungwirth, T., Sinova, J., Manchon, A., Marti, X., Wunderlich, J., & Felser, C. (2018). The multiple directions of antiferromagnetic spintronics. Nature Physics, 14(3), 200-203.
  • [11] Šmejkal, L., Sinova, J., & Jungwirth, T. (2022). Beyond conventional ferromagnetism and antiferromagnetism: A phase with nonrelativistic spin and crystal rotation symmetry. Physical Review X, 12(3), 031042.
  • [12] Avsar, P., Moore, Z., Patton, D., O'Connor, T., Budri, A. M., & Nugent, L. (2020). Repositioning for preventing pressure ulcers: a systematic review and meta-analysis. Journal of Wound Care, 29(9), 496-508.
  • [13] Gibertini, M., Koperski, M., Morpurgo, A. F., & Novoselov, K. S. (2019). Magnetic 2D materials and heterostructures. Nature nanotechnology, 14(5), 408-419.
  • [14] Dieny, B., Prejbeanu, I. L., Garello, K., Gambardella, P., Freitas, P., Lehndorff, R., ... & Bortolotti, P. (2020). Opportunities and challenges for spintronics in the microelectronics industry. Nature Electronics, 3(8), 446-459.
  • [15] Chen, W., Liu, W., Geng, Y., Brown, M. T., Gao, C., & Wu, R. (2017). Recent progress on emergy research: A bibliometric analysis. Renewable and Sustainable Energy Reviews, 73, 1051-1060.
  • [16] Zhang, Y., Xu, H., Feng, J., Wu, H., Yu, G., & Han, X. (2021). Magnetic two-dimensional van der Waals materials for spintronic devices. Chinese Physics B, 30(11), 118504.
  • [17] Wang, S. X., Sun, N. X., Yamaguchi, M., & Yabukami, S. (2000). Properties of a new soft magnetic material. Nature, 407(6801), 150-151.
  • [18] Mishra, R., & Yang, H. (2020). Emerging spintronics phenomena and applications. IEEE Transactions on Magnetics, 57(1), 1-34.
  • [19] Cao, Y., Xing, G., Lin, H., Zhang, N., Zheng, H., & Wang, K. (2020). Prospect of spin-orbitronic devices and their applications. IScience, 23(10).
  • [20] Wolf, S. A., Chtchelkanova, A. Y., & Treger, D. M. (2006). Spintronics—A retrospective and perspective. IBM journal of research and development, 50(1), 101-110.
  • [21] Kang, S. H., & Lee, K. (2013). Emerging materials and devices in spintronic integrated circuits for energy-smart mobile computing and connectivity. Acta Materialia, 61(3), 952-973.
  • [22] Aksu, P. (2024). Strong perpendicular magnetic anisotropy and interlayer coupling in CoRh/Rh/Fe multilayers tailored by Rh spacer layer thickness. Physica B: Condensed Matter, 676, 415662.
  • [23] Itoh, H., & Inoue, J. I. (2006). Theory of tunnel magnetoresistance. Journal of the Magnetics Society of Japan, 30(1), 1-37.
  • [24] Wolf, S. A., Awschalom, D. D., Buhrman, R. A., Daughton, J. M., von Molnár, V. S., Roukes, M. L., ... & Treger, D. M. (2001). Spintronics: a spin-based electronics vision for the future. science, 294(5546), 1488-1495.
  • [25] Adeyeye, A. O., & Shimon, G. (2015). Growth and characterization of magnetic thin film and nanostructures. In Handbook of surface science (Vol. 5, pp. 1-41). North-Holland.
  • [26] Zheng, X. Y., Channa, S., Riddiford, L. J., Wisser, J. J., Mahalingam, K., Bowers, C. T., ... & Suzuki, Y. (2023). Ultra-thin lithium aluminate spinel ferrite films with perpendicular magnetic anisotropy and low damping. Nature communications, 14(1), 4918.
  • [27] Teichert, N., Kucza, D., Yildirim, O., Yuzuak, E. R. C. Ü. M. E. N. T., Dincer, I., Behler, A., ... & Hütten, A. (2015). Structure and giant inverse magnetocaloric effect of epitaxial Ni-Co-Mn-Al films. Physical Review B, 91(18), 184405.
  • [28] Tondra, M., Wang, D., & Qian, Z. (2002). Device applications using spin dependent tunneling and nanostructured materials. In Nanostructured Magnetic Materials and Their Applications (pp. 278-289). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • [29] Chang, L., Wang, M., Liu, L., Luo, S., & Xiao, P. (2014). A brief introduction to giant magnetoresistance. arXiv preprint arXiv:1412.7691.
  • [30] Ritzinger, P., & Výborný, K. (2023). Anisotropic magnetoresistance: materials, models and applications. Royal Society Open Science, 10(10), 230564.
  • [31] Tudu, B., & Tiwari, A. (2017). Recent developments in perpendicular magnetic anisotropy thin films for data storage applications. Vacuum, 146, 329-341.
  • [32] Płóciennik, P., Zawadzka, A., Frankowski, R., & Korcala, A. (2016, July). Selected methods of thin films deposition and their applications. In 2016 18th International Conference on Transparent Optical Networks (ICTON) (pp. 1-4). IEEE.
  • [33] Zhang, W., & Krishnan, K. M. (2014). Epitaxial patterning of thin-films: conventional lithographies and beyond. Journal of Micromechanics and Microengineering, 24(9), 093001.
  • [34] Gibertini, M., Koperski, M., Morpurgo, A. F., & Novoselov, K. S. (2019). Magnetic 2D materials and heterostructures. Nature nanotechnology, 14(5), 408-419.
  • [35] Barla, P., Joshi, V. K., & Bhat, S. (2021). Spintronic devices: a promising alternative to CMOS devices. Journal of Computational Electronics, 20(2), 805-837.
  • [36] Egeloff, W. F., Chen, P. J., Powell, C. J., Parks, D., McMichael, R. D., Judy, J. H., ... & Daughton, J. M. (1998, June). Optimizing GMR spin valves: The outlook for improved properties. In Seventh Biennial IEEE International Nonvolatile Memory Technology Conference. Proceedings (Cat. No. 98EX141) (pp. 34-37). IEEE.
  • [37] Özkal, B., Kazan, S., Karataş, Ö., Ekinci, G., Arda, L., & Rameev, B. Z. (2023). Fabrication and characterization of TiOx based single-cell memristive devices. Materials Research Express, 10(12), 125901.
There are 37 citations in total.

Details

Primary Language English
Subjects Nanomaterials
Journal Section Articles
Authors

Yavuz Selim Balcıoğlu 0000-0001-7138-2972

Perihan Aksu 0000-0002-4175-9190

Publication Date September 26, 2025
Submission Date December 4, 2024
Acceptance Date May 7, 2025
Published in Issue Year 2025 Volume: 21 Issue: 3

Cite

APA Balcıoğlu, Y. S., & Aksu, P. (2025). Advances in Magnetic Thin Films for Spintronic Devices: A Bibliometric and Thematic Analysis. Celal Bayar University Journal of Science, 21(3), 154-165. https://doi.org/10.18466/cbayarfbe.1596292
AMA Balcıoğlu YS, Aksu P. Advances in Magnetic Thin Films for Spintronic Devices: A Bibliometric and Thematic Analysis. CBUJOS. September 2025;21(3):154-165. doi:10.18466/cbayarfbe.1596292
Chicago Balcıoğlu, Yavuz Selim, and Perihan Aksu. “Advances in Magnetic Thin Films for Spintronic Devices: A Bibliometric and Thematic Analysis”. Celal Bayar University Journal of Science 21, no. 3 (September 2025): 154-65. https://doi.org/10.18466/cbayarfbe.1596292.
EndNote Balcıoğlu YS, Aksu P (September 1, 2025) Advances in Magnetic Thin Films for Spintronic Devices: A Bibliometric and Thematic Analysis. Celal Bayar University Journal of Science 21 3 154–165.
IEEE Y. S. Balcıoğlu and P. Aksu, “Advances in Magnetic Thin Films for Spintronic Devices: A Bibliometric and Thematic Analysis”, CBUJOS, vol. 21, no. 3, pp. 154–165, 2025, doi: 10.18466/cbayarfbe.1596292.
ISNAD Balcıoğlu, Yavuz Selim - Aksu, Perihan. “Advances in Magnetic Thin Films for Spintronic Devices: A Bibliometric and Thematic Analysis”. Celal Bayar University Journal of Science 21/3 (September2025), 154-165. https://doi.org/10.18466/cbayarfbe.1596292.
JAMA Balcıoğlu YS, Aksu P. Advances in Magnetic Thin Films for Spintronic Devices: A Bibliometric and Thematic Analysis. CBUJOS. 2025;21:154–165.
MLA Balcıoğlu, Yavuz Selim and Perihan Aksu. “Advances in Magnetic Thin Films for Spintronic Devices: A Bibliometric and Thematic Analysis”. Celal Bayar University Journal of Science, vol. 21, no. 3, 2025, pp. 154-65, doi:10.18466/cbayarfbe.1596292.
Vancouver Balcıoğlu YS, Aksu P. Advances in Magnetic Thin Films for Spintronic Devices: A Bibliometric and Thematic Analysis. CBUJOS. 2025;21(3):154-65.