Research Article
BibTex RIS Cite

Year 2025, Volume: 21 Issue: 3, 107 - 112, 26.09.2025
https://doi.org/10.18466/cbayarfbe.1599930

Abstract

References

  • 1]. Balsera, M, Buchanan, BB. 2019 Evolution of the thioredoxin system as a step enabling adaptation to oxidative stress. Free Radical Biology and Medicine; 140: 28-35.
  • [2]. Nikkanen, L, Rintamaki, E. 2019 Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants. Biochemical Journal; 476(7): 1159-1172.
  • [3]. Degen, GE. 2024 Light-driven dynamics: Unravelling thiol-redox networks in plants through proteomics. Plant Physiology; 195(2): 1111-1113.
  • [4]. Souza, PV, Hou, Ly, Sun, H, Poeker, L, Lehman, M, Bahadar, H, Domingues‐Junior, AP, Dard, A, Bariat, L, Reichheld, Jp. 2023 Plant NADPH‐dependent thioredoxin reductases are crucial for the metabolism of sink leaves and plant acclimation to elevated CO2. Plant, Cell & Environment; 46(8): 2337-2357.
  • [5]. Xu, L, Zhou, Y, Cheng, J, Kang, L, Qiang, Y, Yan, X, Yan, Y, Tang, Y, Wang, Y, Li, H. 2022 Identification of thioredoxin genes and analysis of their expression under abiotic stresses in Medicago truncatula. Acta Physiologiae Plantarum; 44(11): 120.
  • [6]. Pérez-Ruiz, JM, Naranjo, B, Ojeda, V, Guinea, M, Cejudo, FJ. 2017 NTRC-dependent redox balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus. Proceedings of the National Academy of Sciences; 114(45): 12069-12074.
  • [7]. Bhurta, R, Hurali, DT, Tyagi, S, Sathee, L, Adavi, BS, Singh, D, Mallick, N, Chinnusamy, V, Vinod, Jha, SK. 2022 Genome-wide identification and expression analysis of the thioredoxin (TRX) gene family reveals its role in leaf rust resistance in wheat (Triticum aestivum L.). Frontiers in Genetics; 13: 836030.
  • [8]. Serrato, AJ, Cejudo, FJ. 2003 Type-h thioredoxins accumulate in the nucleus of developing wheat seed tissues suffering oxidative stress. Planta; 217(3): 392-399.
  • [9]. Cazalis, R, Pulido, P, Aussenac, T, Perez-Ruiz, JM, Cejudo, FJ. 2006 Cloning and characterization of three thioredoxin h isoforms from wheat showing differential expression in seeds. Journal of Experimental Botany; 57(10): 2165-72.
  • [10]. Tang, Z, Zhao, FJ. 2020 The roles of membrane transporters in arsenic uptake, translocation and detoxification in plants. Critical Reviews in Environmental Science and Technology: 1-36.
  • [11]. Bianucci, E, Peralta, JM, Furlan, A, Hernández, LE, Castro, S. 2020 Arsenic in wheat, maize, and other crops. Arsenic in Drinking Water and Food; 9: 279-306.
  • [12]. Ghosh, S, Shaw, AK, Azahar, I, Adhikari, S, Jana, S, Roy, S, Kundu, A, Sherpa, AR, Hossain, Z. 2016 Arsenate (AsV) stress response in maize (Zea mays L.). Environmental and Experimental Botany; 130: 53-67.
  • [13]. Sachdev, S, Ansari, SA, Ansari, MI, Fujita, M, Hasanuzzaman, M. 2021 Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants (Basel); 10(2).
  • [14]. Sharma, A, Shahzad, B, Rehman, A, Bhardwaj, R, Landi, M, Zheng, B. 2019 Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules; 24(13).
  • [15]. Ghasemzadeh, A, Ghasemzadeh, N. 2011 Flavonoids and phenolic acids: Role and biochemical activity in plants and human. Journal of Medicinal Plants Research; 5(31).
  • [16]. Alam, W, Khan, H, Shah, MA, Cauli, O, Saso, L. 2020 Kaempferol as a dietary anti-inflammatory agent: Current therapeutic standing. Molecules; 25(18).
  • [17]. Imran, M, Salehi, B, Sharifi-Rad, J, Aslam Gondal, T, Saeed, F, Imran, A, Shahbaz, M, Tsouh Fokou, PV, Umair Arshad, M, Khan, H, Guerreiro, SG, Martins, N, Estevinho, LM. 2019 Kaempferol: A key emphasis to its anticancer potential. Molecules; 24(12).
  • [18]. Marin, L, Miguelez, EM, Villar, CJ, Lombo, F. 2015 Bioavailability of dietary polyphenols and gut microbiota metabolism: Antimicrobial properties. BioMed Research International; 2015: 905215.
  • [19]. Yao, X, Jiang, H, NanXu, Y, Piao, X, Gao, Q, Kim, NH. 2019 Kaempferol attenuates mitochondrial dysfunction and oxidative stress induced by H2O2 during porcine embryonic development. Theriogenology; 135: 174-180.
  • [20]. Rashidi, Z, Aleyasin, A, Eslami, M, Nekoonam, S, Zendedel, A, Bahramrezaie, M, Amidi, F. 2019 Quercetin protects human granulosa cells against oxidative stress via thioredoxin system. Reproductive Biology; 19(3): 245-254.
  • [21]. Jan, R, Khan, M, Asaf, S, Lubna, Asif, S, Kim, KM. 2022 Bioactivity and therapeutic potential of kaempferol and quercetin: New insights for plant and human health. Plants (Basel); 11(19).
  • [22]. Parvin, K, Hasanuzzaman, M, Bhuyan, M, Mohsin, SM, Fujita, AM. 2019 Quercetin mediated salt tolerance in tomato through the enhancement of plant antioxidant defense and glyoxalase systems. Plants (Basel); 8(8).
  • [23]. Sil, P, Biswas, AK. 2020 Silicon nutrition modulates arsenic-inflicted oxidative overload and thiol metabolism in wheat (Triticum aestivum L.) seedlings. Environmental Science and Pollution Research; 27(36): 45209-45224.
  • [24]. Yang, L, Feng, YX, Lin, YJ, Yu, XZ. 2021 Comparative effects of sodium hydrosulfide and proline on functional repair in rice chloroplast through the D1 protein and thioredoxin system under simulated thiocyanate pollution. Chemosphere; 284: 131389.
  • [25]. Kamoun, H, Feki, K, Tounsi, S, Jrad, O, Brini, F. 2024 The thioredoxin h-type TdTrxh2 protein of durum wheat confers abiotic stress tolerance of the transformant Arabidopsis plants through its protective role and the regulation of redox homoeostasis. Protoplasma; 261(2): 317-331.
  • [26]. Arnaiz, A, Romero-Puertas, MC, Santamaria, ME, Rosa-Diaz, I, Arbona, V, Muñoz, A, Grbic, V, González-Melendi, P, Castellano, MM, Sandalio, LM. 2023 The Arabidopsis thioredoxin TRXh5regulates the S-nitrosylation pattern of the TIRK receptor being both proteins essential in the modulation of defences to Tetranychus urticae. Redox Biology; 67: 102902.
  • [27]. Gelhaye, E, Rouhier, N, Navrot, N, Jacquot, JP. 2005 The plant thioredoxin system. Cellular and Molecular Life Sciences; 62(1): 24-35.
  • [28]. Pulido, P, Cazalis, R, Cejudo, FJ. 2009 An antioxidant redox system in the nucleus of wheat seed cells suffering oxidative stress. The Plant Journal; 57(1): 132-45.
  • [29]. Gan, X, Qiao, S, Liang, Y, Li, K, Xu, H. 2024 Ascorbate-glutathione cycle and thioredoxin system are involved in nitric oxide alleviating excess nitrate stress in tomato seedlings. The Journal of Horticultural Science and Biotechnology; 99(1): 33-45.
  • [30]. Tong, L, Lin, M, Zhu, L, Liao, B, Lu, L, Lu, Y, Chen, J, Shi, J, Hao, Z. 2024 Unraveling the role of the Liriodendron Thioredoxin (TRX) gene family in an abiotic stress response. Plants; 13(12): 1674.

Regulation of the Thioredoxin System by Quercetin and Kaempferol in Arsenic Stressed Wheat (Triticum aestivum L.)

Year 2025, Volume: 21 Issue: 3, 107 - 112, 26.09.2025
https://doi.org/10.18466/cbayarfbe.1599930

Abstract

Thioredoxins (TRXs) are small proteins that function as redox regulators in various metabolic processes. However, due to the complexity of the thioredoxin system, research on its role in stress tolerance remains limited. This study aimed to elucidate the mechanisms by which quercetin (Q) and kaempferol (K) influence the transcription levels of NTRA, TRX15, TRX4, and TRXh1 genes, which are associated with the chloroplastic and cytoplasmic thioredoxin systems in wheat seedlings under arsenic (As) stress. The expression of TRX system-related genes was found to be reduced in wheat leaves subjected to As stress. While the expression of NTRA and TRX15 genes showed a slight increase in the As+Q group, Q did not exhibit a dominant effect on the regulation of the thioredoxin system. Similarly, As+K treatment led to an increase in TRXh1 gene expression. Although the regulatory effect of K was only noticeable with the combined application of Stress+Q+K, this effect was not strong enough to suggest that the thioredoxin system plays an active role in the stress response.

References

  • 1]. Balsera, M, Buchanan, BB. 2019 Evolution of the thioredoxin system as a step enabling adaptation to oxidative stress. Free Radical Biology and Medicine; 140: 28-35.
  • [2]. Nikkanen, L, Rintamaki, E. 2019 Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants. Biochemical Journal; 476(7): 1159-1172.
  • [3]. Degen, GE. 2024 Light-driven dynamics: Unravelling thiol-redox networks in plants through proteomics. Plant Physiology; 195(2): 1111-1113.
  • [4]. Souza, PV, Hou, Ly, Sun, H, Poeker, L, Lehman, M, Bahadar, H, Domingues‐Junior, AP, Dard, A, Bariat, L, Reichheld, Jp. 2023 Plant NADPH‐dependent thioredoxin reductases are crucial for the metabolism of sink leaves and plant acclimation to elevated CO2. Plant, Cell & Environment; 46(8): 2337-2357.
  • [5]. Xu, L, Zhou, Y, Cheng, J, Kang, L, Qiang, Y, Yan, X, Yan, Y, Tang, Y, Wang, Y, Li, H. 2022 Identification of thioredoxin genes and analysis of their expression under abiotic stresses in Medicago truncatula. Acta Physiologiae Plantarum; 44(11): 120.
  • [6]. Pérez-Ruiz, JM, Naranjo, B, Ojeda, V, Guinea, M, Cejudo, FJ. 2017 NTRC-dependent redox balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus. Proceedings of the National Academy of Sciences; 114(45): 12069-12074.
  • [7]. Bhurta, R, Hurali, DT, Tyagi, S, Sathee, L, Adavi, BS, Singh, D, Mallick, N, Chinnusamy, V, Vinod, Jha, SK. 2022 Genome-wide identification and expression analysis of the thioredoxin (TRX) gene family reveals its role in leaf rust resistance in wheat (Triticum aestivum L.). Frontiers in Genetics; 13: 836030.
  • [8]. Serrato, AJ, Cejudo, FJ. 2003 Type-h thioredoxins accumulate in the nucleus of developing wheat seed tissues suffering oxidative stress. Planta; 217(3): 392-399.
  • [9]. Cazalis, R, Pulido, P, Aussenac, T, Perez-Ruiz, JM, Cejudo, FJ. 2006 Cloning and characterization of three thioredoxin h isoforms from wheat showing differential expression in seeds. Journal of Experimental Botany; 57(10): 2165-72.
  • [10]. Tang, Z, Zhao, FJ. 2020 The roles of membrane transporters in arsenic uptake, translocation and detoxification in plants. Critical Reviews in Environmental Science and Technology: 1-36.
  • [11]. Bianucci, E, Peralta, JM, Furlan, A, Hernández, LE, Castro, S. 2020 Arsenic in wheat, maize, and other crops. Arsenic in Drinking Water and Food; 9: 279-306.
  • [12]. Ghosh, S, Shaw, AK, Azahar, I, Adhikari, S, Jana, S, Roy, S, Kundu, A, Sherpa, AR, Hossain, Z. 2016 Arsenate (AsV) stress response in maize (Zea mays L.). Environmental and Experimental Botany; 130: 53-67.
  • [13]. Sachdev, S, Ansari, SA, Ansari, MI, Fujita, M, Hasanuzzaman, M. 2021 Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants (Basel); 10(2).
  • [14]. Sharma, A, Shahzad, B, Rehman, A, Bhardwaj, R, Landi, M, Zheng, B. 2019 Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules; 24(13).
  • [15]. Ghasemzadeh, A, Ghasemzadeh, N. 2011 Flavonoids and phenolic acids: Role and biochemical activity in plants and human. Journal of Medicinal Plants Research; 5(31).
  • [16]. Alam, W, Khan, H, Shah, MA, Cauli, O, Saso, L. 2020 Kaempferol as a dietary anti-inflammatory agent: Current therapeutic standing. Molecules; 25(18).
  • [17]. Imran, M, Salehi, B, Sharifi-Rad, J, Aslam Gondal, T, Saeed, F, Imran, A, Shahbaz, M, Tsouh Fokou, PV, Umair Arshad, M, Khan, H, Guerreiro, SG, Martins, N, Estevinho, LM. 2019 Kaempferol: A key emphasis to its anticancer potential. Molecules; 24(12).
  • [18]. Marin, L, Miguelez, EM, Villar, CJ, Lombo, F. 2015 Bioavailability of dietary polyphenols and gut microbiota metabolism: Antimicrobial properties. BioMed Research International; 2015: 905215.
  • [19]. Yao, X, Jiang, H, NanXu, Y, Piao, X, Gao, Q, Kim, NH. 2019 Kaempferol attenuates mitochondrial dysfunction and oxidative stress induced by H2O2 during porcine embryonic development. Theriogenology; 135: 174-180.
  • [20]. Rashidi, Z, Aleyasin, A, Eslami, M, Nekoonam, S, Zendedel, A, Bahramrezaie, M, Amidi, F. 2019 Quercetin protects human granulosa cells against oxidative stress via thioredoxin system. Reproductive Biology; 19(3): 245-254.
  • [21]. Jan, R, Khan, M, Asaf, S, Lubna, Asif, S, Kim, KM. 2022 Bioactivity and therapeutic potential of kaempferol and quercetin: New insights for plant and human health. Plants (Basel); 11(19).
  • [22]. Parvin, K, Hasanuzzaman, M, Bhuyan, M, Mohsin, SM, Fujita, AM. 2019 Quercetin mediated salt tolerance in tomato through the enhancement of plant antioxidant defense and glyoxalase systems. Plants (Basel); 8(8).
  • [23]. Sil, P, Biswas, AK. 2020 Silicon nutrition modulates arsenic-inflicted oxidative overload and thiol metabolism in wheat (Triticum aestivum L.) seedlings. Environmental Science and Pollution Research; 27(36): 45209-45224.
  • [24]. Yang, L, Feng, YX, Lin, YJ, Yu, XZ. 2021 Comparative effects of sodium hydrosulfide and proline on functional repair in rice chloroplast through the D1 protein and thioredoxin system under simulated thiocyanate pollution. Chemosphere; 284: 131389.
  • [25]. Kamoun, H, Feki, K, Tounsi, S, Jrad, O, Brini, F. 2024 The thioredoxin h-type TdTrxh2 protein of durum wheat confers abiotic stress tolerance of the transformant Arabidopsis plants through its protective role and the regulation of redox homoeostasis. Protoplasma; 261(2): 317-331.
  • [26]. Arnaiz, A, Romero-Puertas, MC, Santamaria, ME, Rosa-Diaz, I, Arbona, V, Muñoz, A, Grbic, V, González-Melendi, P, Castellano, MM, Sandalio, LM. 2023 The Arabidopsis thioredoxin TRXh5regulates the S-nitrosylation pattern of the TIRK receptor being both proteins essential in the modulation of defences to Tetranychus urticae. Redox Biology; 67: 102902.
  • [27]. Gelhaye, E, Rouhier, N, Navrot, N, Jacquot, JP. 2005 The plant thioredoxin system. Cellular and Molecular Life Sciences; 62(1): 24-35.
  • [28]. Pulido, P, Cazalis, R, Cejudo, FJ. 2009 An antioxidant redox system in the nucleus of wheat seed cells suffering oxidative stress. The Plant Journal; 57(1): 132-45.
  • [29]. Gan, X, Qiao, S, Liang, Y, Li, K, Xu, H. 2024 Ascorbate-glutathione cycle and thioredoxin system are involved in nitric oxide alleviating excess nitrate stress in tomato seedlings. The Journal of Horticultural Science and Biotechnology; 99(1): 33-45.
  • [30]. Tong, L, Lin, M, Zhu, L, Liao, B, Lu, L, Lu, Y, Chen, J, Shi, J, Hao, Z. 2024 Unraveling the role of the Liriodendron Thioredoxin (TRX) gene family in an abiotic stress response. Plants; 13(12): 1674.
There are 30 citations in total.

Details

Primary Language English
Subjects Plant Biotechnology, Plant Cell and Molecular Biology
Journal Section Articles
Authors

Büşra Arıkan Abdulveli 0000-0001-5313-0501

Evren Yıldıztugay 0000-0002-4675-2027

Publication Date September 26, 2025
Submission Date December 11, 2024
Acceptance Date March 5, 2025
Published in Issue Year 2025 Volume: 21 Issue: 3

Cite

APA Arıkan Abdulveli, B., & Yıldıztugay, E. (2025). Regulation of the Thioredoxin System by Quercetin and Kaempferol in Arsenic Stressed Wheat (Triticum aestivum L.). Celal Bayar University Journal of Science, 21(3), 107-112. https://doi.org/10.18466/cbayarfbe.1599930
AMA Arıkan Abdulveli B, Yıldıztugay E. Regulation of the Thioredoxin System by Quercetin and Kaempferol in Arsenic Stressed Wheat (Triticum aestivum L.). CBUJOS. September 2025;21(3):107-112. doi:10.18466/cbayarfbe.1599930
Chicago Arıkan Abdulveli, Büşra, and Evren Yıldıztugay. “Regulation of the Thioredoxin System by Quercetin and Kaempferol in Arsenic Stressed Wheat (Triticum Aestivum L.)”. Celal Bayar University Journal of Science 21, no. 3 (September 2025): 107-12. https://doi.org/10.18466/cbayarfbe.1599930.
EndNote Arıkan Abdulveli B, Yıldıztugay E (September 1, 2025) Regulation of the Thioredoxin System by Quercetin and Kaempferol in Arsenic Stressed Wheat (Triticum aestivum L.). Celal Bayar University Journal of Science 21 3 107–112.
IEEE B. Arıkan Abdulveli and E. Yıldıztugay, “Regulation of the Thioredoxin System by Quercetin and Kaempferol in Arsenic Stressed Wheat (Triticum aestivum L.)”, CBUJOS, vol. 21, no. 3, pp. 107–112, 2025, doi: 10.18466/cbayarfbe.1599930.
ISNAD Arıkan Abdulveli, Büşra - Yıldıztugay, Evren. “Regulation of the Thioredoxin System by Quercetin and Kaempferol in Arsenic Stressed Wheat (Triticum Aestivum L.)”. Celal Bayar University Journal of Science 21/3 (September2025), 107-112. https://doi.org/10.18466/cbayarfbe.1599930.
JAMA Arıkan Abdulveli B, Yıldıztugay E. Regulation of the Thioredoxin System by Quercetin and Kaempferol in Arsenic Stressed Wheat (Triticum aestivum L.). CBUJOS. 2025;21:107–112.
MLA Arıkan Abdulveli, Büşra and Evren Yıldıztugay. “Regulation of the Thioredoxin System by Quercetin and Kaempferol in Arsenic Stressed Wheat (Triticum Aestivum L.)”. Celal Bayar University Journal of Science, vol. 21, no. 3, 2025, pp. 107-12, doi:10.18466/cbayarfbe.1599930.
Vancouver Arıkan Abdulveli B, Yıldıztugay E. Regulation of the Thioredoxin System by Quercetin and Kaempferol in Arsenic Stressed Wheat (Triticum aestivum L.). CBUJOS. 2025;21(3):107-12.