Research Article
BibTex RIS Cite

Evaluation of the thermal performance of a cold plate with different fin structures for IGBT cooling

Year 2025, Volume: 21 Issue: 3, 80 - 88, 26.09.2025
https://doi.org/10.18466/cbayarfbe.1732854

Abstract

Insulated Gate Bipolar Transistor (IGBT) modules are a frequently used switching and power control element in power electronics. A significant amount of heat is released due to conduction and switching losses inside the module. To ensure the efficient and long-term operation of the IGBT, the heat generated must be cooled effectively. Forced liquid cooled cold plates are widely used for high power density modules. In this study, a cold plate is designed for liquid cooling of three PrimePack3 IGBTs used in an industrial motor drive. Straight, staggered pin and oblique fin structures are applied to the cooling channels of the cold plate with a parallel flow configuration. The numerical model of the cold plate is developed and analyzed using a CFD software. The effects of fin structures on liquid cooling performance are compared and discussed in detail. The thermal resistance values for the staggered pin and oblique fin structures exhibit reductions of 46.5% and 60.1%, respectively, compared to the straight fin configuration.

References

  • [1]. X, Perpina, J. Serviere, X. Jorda, A. Fauquet, S. Hidalgo, J. Urresti-Ibanez, et al., IGBT module failure analysis in railway applications. Microelectron. Reliab. 48 (2008) 1427–31.
  • [2]. M. Ciappa, A. Castellazzi, Reliability of high-power IGBT modules for traction applications, Int. Rel. Phys. Symp. Proc (2007) 480–485.
  • [3]. C. Qian, A.M. Gheitaghy, J. Fan, H. Tang, B. Sun, H. Ye, G. Zhang, Thermal management on IGBT power electronic devices and modules, IEEE Access 6 (2018) 12868–12884.
  • [4.] H. Tang, Y. Tang, Z. Wan, J. Li, W. Yuan, L. Lu, Y. Li, K. Tang, Review of applications and developments of ultra-thin micro heat pipes for electronic cooling, Appl. Energy 223 (2018) 383–400.
  • [5]. G. Li, J. Zhang, J. Gao, Thermal Analysis and Structural Optimization of Dual IGBT Module Heat Sink under Forced Air Cooling Condition, in: 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), 2019.
  • [6]. B. Wang, S. Member, L. Wang, S. Member, F. Yang, W. Mu, M. Qin, S. Member, F. Zhang, D. Ma, J. Wang, J. Liu, Air-cooling system optimization for IGBT modules in MMC using embedded O-shaped heat pipes, IEEE J. Emerg. Sel. Top. Power Electron. 9 (2021) 3992–4003.
  • [7]. Y. Zhao, Z. Liu, Z. Quan, et al., Thermal management and multi-objective optimization of an air-cooled heat sink based on flat miniature-heat-pipe arrays, J. Therm. Anal. Calorim. 149 (5) (2024) 2443–2462.
  • [8]. X. Zhao, J. Sun, C. Wang, Z. Zhang, Experimental and numerical study of electronic module-cooling heat sinks used in a variable frequency air-conditioner outdoor unit, Int. J. Refrig 38 (2014) 10–21.
  • [9]. S.H. Kim, C.S. Heu, J.Y. Mok, S.-W. Kang, D.R. Kim, Enhanced thermal performance of phase change material-integrated fin-type heat sinks for high power electronics cooling, Int. J. Heat Mass Transf. 184 (2022) 122257.
  • [10]. Y.E. Nikolaenko, A.V. Baranyuk, S.A. Reva, E.N. Pis ′ mennyi, F.F. Dubrovka, V. A. Rohachov, Improving air cooling efficiency of transmit/receive modules through using heat pipes, Therm. Sci. Eng. Prog. 14 (2019) 100418.
  • [11]. Y. Chen, B. Li, X. Wang, et al., Investigation of heat transfer and thermal stresses of novel thermal management system integrated with vapour chamber for IGBT power module, Thermal Science and Engineering Progress. 10 (2019) 73–81.
  • [12]. Y. Ren, W. Luo, Z. He, N. Qin, Q. Meng, M. Qiu, et al., Development and performance study of a radiation-enhanced heat pipe radiator for cooling high- power IGBT modules, Appl. Therm. Eng. 262 (2025), 125307, https://doi.org/ 10.1016/j.applthermaleng.2024.125307
  • [13]. S. Ki, J. Lee, S. Ryu, S. Bang, K. Kim, Y. Nam, A bio-inspired, low pressure drop liquid cooling system for high-power IGBT modules for EV/HEV applications, Int. J. Therm. Sci. 161 (2021) 106708.
  • [14]. M. Katagiri, K. Mae, Y. Nishimura, Y. Yasuda, T. Yamauchi, Development of liquid cooling system with integrated traction converters and auxiliary power supplies for 200-km/h commuter trains, 2017, https://www.hitachi.com/rev/archive/2017/r2017_02/10/index.html.
  • [15]. M. Parlak, A. ¨Ozsunar, A. Kosar, High aspect ratio microchannel heat sink optimization under thermally developing flow conditions based on minimum power consumption, Appl. Therm. Eng. 201 (2022), 117700.
  • [16]. M.B. Akgül, F.S. Erçel, Thermal Performance Analysis of a Liquid Cooling Plate for Power Electronics. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20.4 (2024): 72-81.
  • [17]. W. Jiang, J. Zhao, Z. Rao, Heat transfer performance enhancement of liquid cold plate based on mini V-shaped rib for battery thermal management, Appl. Therm. Eng. 189 (2021), 116729.
  • [18]. X. Mo, H. Zhi, Y. Xiao, H. Hua, L. He, Topology optimization of cooling plates for battery thermal management, Int. J. Heat Mass Tran. 178 (2021) 121612.
  • [19]. X. Cao, H.-L. Liu, X.-D. Shao, H. Shen, G. Xie, Thermal performance of double serpentine minichannel heat sinks: Effects of inlet-outlet arrangements and through-holes, Int. J. Heat Mass Transf. 153 (2020) 119575.
  • [20] B. Zhan, H. Xu, H. Zhang, D. Leng, C. Tian, Y. Zhou, Research and optimization of liquid cooling plate for high-heat-flux components, J. Refriger. 42 (2) (2021) 69–76.
  • [21] H. Dai, T. Wenbin, H. Min, S. Liu, C. Zhang, Z. Wei, Z. Dong, C. S. Chin, Enhancing thermal management in electric commercial vehicles: A novel liquid-cooled Multiple Parallel-Serpentine channels. Journal of Energy Storage 107 (2025): 114708.
  • [22]. M. Pang, J. Liu, W. Liu, et al., Thermal-and-energy-conservation optimization of the cooling plate for IGBT by field synergy and entropy generation, Int. J. Heat Fluid Flow 108 (2024) 109453.
  • [23]. H. Yang, M. Li, Z. Wang, B. Ma, A compact and lightweight hybrid liquid cooling system coupling with Z-type cold plates and PCM composite for battery thermal management, Energy 263 (2023), 126026.
  • [24]. N.I. Om, R. Zulkifli, P. Gunnasegaran, Influence of the oblique fin arrangement on the fluid flow and thermal performance of liquid cold plate, Case Stud. Thermal Eng. 12 (2018) 717–727.
  • [25]. S. Wiriyasart, P. Naphon, Liquid impingement cooling of cold plate heat sink with different fin configurations: High heat flux applications, Int. J. Heat Mass Tran. 140 (2019) 281–292.
  • [26]. Q. Zhang, Z. Feng, J. Zhang, F. Guo, S. Huang, Z. Li, Design of a mini-channel heat sink for high-heat-flux electronic devices, Appl. Therm. Eng. 216 (2022), 119053.
  • [27]. A.A. Imran, N.S. Mahmoud, H.M. Jaffal, Analysis of channel configuration effects on heat transfer enhancement in streamline-shaped cold plates used in battery cooling system: a comparative study , Int. Commun. Heat Mass Transf. 155 (2024) 107570.
  • [28]. J. Ren, X. Qiu, S. Wang, A liquid cooling plate based on topology optimization and bionics simplified design for battery cooling, J Energy Storage 102 (2024) 114171.
  • [29]. W. Jiang, J. Zhao, Z. Rao, Heat transfer performance enhancement of liquid cold plate based on mini V-shaped rib for battery thermal management, Appl. Therm. Eng. (2021), 116729.
  • [30]. J. Pandey, A. Husain, M. Zahid Ansari, N. Al-Azri, Performance analysis of cold plate heat sink with parallel channel and pin-fin, Mater. Today: Proc. 44 (2021) 3144–3149.
  • [31]. T.H. Shih, J. Zhu, J.L. Lumley, A new Reynolds stress algebraic equation model, Comput. Methods Appl. Mech. Eng. 125 (1995) 287–302.

IGBT soğutması için farklı kanat yapılarına sahip bir soğuk plakanın termal performansının değerlendirilmesi

Year 2025, Volume: 21 Issue: 3, 80 - 88, 26.09.2025
https://doi.org/10.18466/cbayarfbe.1732854

Abstract

IGBT modülleri güç elektroniğinde sıklıkla kullanılan bir anahtarlama ve güç kontrol elemanıdır. Modül içindeki iletim ve anahtarlama kayıpları nedeniyle önemli miktarda ısı açığa çıkar. IGBT'nin verimli ve uzun süreli çalışmasını sağlamak için, üretilen ısının etkili bir şekilde soğutulması gerekir. Zorlanmış sıvı soğutmalı soğuk plakalar, yüksek güç yoğunluklu modüller için yaygın olarak kullanılmaktadır. Bu çalışmada, endüstriyel bir motor sürücüsünde kullanılan üç PrimePack3 IGBT'nin sıvı soğutması için bir soğuk plaka tasarlanmıştır. Paralel akış konfigürasyonuna sahip soğuk plakanın soğutma kanallarına düz, kademeli pim ve eğik kanat yapıları uygulanmıştır. Soğuk plakanın sayısal modeli geliştirilmiş ve bir CFD yazılımı kullanılarak analiz edilmiştir. Kanat yapılarının sıvı soğutma performansı üzerindeki etkileri karşılaştırılmış ve ayrıntılı olarak tartışılmıştır.

Translated with DeepL.com (free version)

References

  • [1]. X, Perpina, J. Serviere, X. Jorda, A. Fauquet, S. Hidalgo, J. Urresti-Ibanez, et al., IGBT module failure analysis in railway applications. Microelectron. Reliab. 48 (2008) 1427–31.
  • [2]. M. Ciappa, A. Castellazzi, Reliability of high-power IGBT modules for traction applications, Int. Rel. Phys. Symp. Proc (2007) 480–485.
  • [3]. C. Qian, A.M. Gheitaghy, J. Fan, H. Tang, B. Sun, H. Ye, G. Zhang, Thermal management on IGBT power electronic devices and modules, IEEE Access 6 (2018) 12868–12884.
  • [4.] H. Tang, Y. Tang, Z. Wan, J. Li, W. Yuan, L. Lu, Y. Li, K. Tang, Review of applications and developments of ultra-thin micro heat pipes for electronic cooling, Appl. Energy 223 (2018) 383–400.
  • [5]. G. Li, J. Zhang, J. Gao, Thermal Analysis and Structural Optimization of Dual IGBT Module Heat Sink under Forced Air Cooling Condition, in: 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), 2019.
  • [6]. B. Wang, S. Member, L. Wang, S. Member, F. Yang, W. Mu, M. Qin, S. Member, F. Zhang, D. Ma, J. Wang, J. Liu, Air-cooling system optimization for IGBT modules in MMC using embedded O-shaped heat pipes, IEEE J. Emerg. Sel. Top. Power Electron. 9 (2021) 3992–4003.
  • [7]. Y. Zhao, Z. Liu, Z. Quan, et al., Thermal management and multi-objective optimization of an air-cooled heat sink based on flat miniature-heat-pipe arrays, J. Therm. Anal. Calorim. 149 (5) (2024) 2443–2462.
  • [8]. X. Zhao, J. Sun, C. Wang, Z. Zhang, Experimental and numerical study of electronic module-cooling heat sinks used in a variable frequency air-conditioner outdoor unit, Int. J. Refrig 38 (2014) 10–21.
  • [9]. S.H. Kim, C.S. Heu, J.Y. Mok, S.-W. Kang, D.R. Kim, Enhanced thermal performance of phase change material-integrated fin-type heat sinks for high power electronics cooling, Int. J. Heat Mass Transf. 184 (2022) 122257.
  • [10]. Y.E. Nikolaenko, A.V. Baranyuk, S.A. Reva, E.N. Pis ′ mennyi, F.F. Dubrovka, V. A. Rohachov, Improving air cooling efficiency of transmit/receive modules through using heat pipes, Therm. Sci. Eng. Prog. 14 (2019) 100418.
  • [11]. Y. Chen, B. Li, X. Wang, et al., Investigation of heat transfer and thermal stresses of novel thermal management system integrated with vapour chamber for IGBT power module, Thermal Science and Engineering Progress. 10 (2019) 73–81.
  • [12]. Y. Ren, W. Luo, Z. He, N. Qin, Q. Meng, M. Qiu, et al., Development and performance study of a radiation-enhanced heat pipe radiator for cooling high- power IGBT modules, Appl. Therm. Eng. 262 (2025), 125307, https://doi.org/ 10.1016/j.applthermaleng.2024.125307
  • [13]. S. Ki, J. Lee, S. Ryu, S. Bang, K. Kim, Y. Nam, A bio-inspired, low pressure drop liquid cooling system for high-power IGBT modules for EV/HEV applications, Int. J. Therm. Sci. 161 (2021) 106708.
  • [14]. M. Katagiri, K. Mae, Y. Nishimura, Y. Yasuda, T. Yamauchi, Development of liquid cooling system with integrated traction converters and auxiliary power supplies for 200-km/h commuter trains, 2017, https://www.hitachi.com/rev/archive/2017/r2017_02/10/index.html.
  • [15]. M. Parlak, A. ¨Ozsunar, A. Kosar, High aspect ratio microchannel heat sink optimization under thermally developing flow conditions based on minimum power consumption, Appl. Therm. Eng. 201 (2022), 117700.
  • [16]. M.B. Akgül, F.S. Erçel, Thermal Performance Analysis of a Liquid Cooling Plate for Power Electronics. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20.4 (2024): 72-81.
  • [17]. W. Jiang, J. Zhao, Z. Rao, Heat transfer performance enhancement of liquid cold plate based on mini V-shaped rib for battery thermal management, Appl. Therm. Eng. 189 (2021), 116729.
  • [18]. X. Mo, H. Zhi, Y. Xiao, H. Hua, L. He, Topology optimization of cooling plates for battery thermal management, Int. J. Heat Mass Tran. 178 (2021) 121612.
  • [19]. X. Cao, H.-L. Liu, X.-D. Shao, H. Shen, G. Xie, Thermal performance of double serpentine minichannel heat sinks: Effects of inlet-outlet arrangements and through-holes, Int. J. Heat Mass Transf. 153 (2020) 119575.
  • [20] B. Zhan, H. Xu, H. Zhang, D. Leng, C. Tian, Y. Zhou, Research and optimization of liquid cooling plate for high-heat-flux components, J. Refriger. 42 (2) (2021) 69–76.
  • [21] H. Dai, T. Wenbin, H. Min, S. Liu, C. Zhang, Z. Wei, Z. Dong, C. S. Chin, Enhancing thermal management in electric commercial vehicles: A novel liquid-cooled Multiple Parallel-Serpentine channels. Journal of Energy Storage 107 (2025): 114708.
  • [22]. M. Pang, J. Liu, W. Liu, et al., Thermal-and-energy-conservation optimization of the cooling plate for IGBT by field synergy and entropy generation, Int. J. Heat Fluid Flow 108 (2024) 109453.
  • [23]. H. Yang, M. Li, Z. Wang, B. Ma, A compact and lightweight hybrid liquid cooling system coupling with Z-type cold plates and PCM composite for battery thermal management, Energy 263 (2023), 126026.
  • [24]. N.I. Om, R. Zulkifli, P. Gunnasegaran, Influence of the oblique fin arrangement on the fluid flow and thermal performance of liquid cold plate, Case Stud. Thermal Eng. 12 (2018) 717–727.
  • [25]. S. Wiriyasart, P. Naphon, Liquid impingement cooling of cold plate heat sink with different fin configurations: High heat flux applications, Int. J. Heat Mass Tran. 140 (2019) 281–292.
  • [26]. Q. Zhang, Z. Feng, J. Zhang, F. Guo, S. Huang, Z. Li, Design of a mini-channel heat sink for high-heat-flux electronic devices, Appl. Therm. Eng. 216 (2022), 119053.
  • [27]. A.A. Imran, N.S. Mahmoud, H.M. Jaffal, Analysis of channel configuration effects on heat transfer enhancement in streamline-shaped cold plates used in battery cooling system: a comparative study , Int. Commun. Heat Mass Transf. 155 (2024) 107570.
  • [28]. J. Ren, X. Qiu, S. Wang, A liquid cooling plate based on topology optimization and bionics simplified design for battery cooling, J Energy Storage 102 (2024) 114171.
  • [29]. W. Jiang, J. Zhao, Z. Rao, Heat transfer performance enhancement of liquid cold plate based on mini V-shaped rib for battery thermal management, Appl. Therm. Eng. (2021), 116729.
  • [30]. J. Pandey, A. Husain, M. Zahid Ansari, N. Al-Azri, Performance analysis of cold plate heat sink with parallel channel and pin-fin, Mater. Today: Proc. 44 (2021) 3144–3149.
  • [31]. T.H. Shih, J. Zhu, J.L. Lumley, A new Reynolds stress algebraic equation model, Comput. Methods Appl. Mech. Eng. 125 (1995) 287–302.
There are 31 citations in total.

Details

Primary Language English
Subjects Energy Efficiency
Journal Section Articles
Authors

M. Bahattin Akgül 0000-0002-8916-1171

Furkan Sinan Erçel 0000-0002-5778-7954

Publication Date September 26, 2025
Submission Date July 2, 2025
Acceptance Date August 1, 2025
Published in Issue Year 2025 Volume: 21 Issue: 3

Cite

APA Akgül, M. B., & Erçel, F. S. (2025). Evaluation of the thermal performance of a cold plate with different fin structures for IGBT cooling. Celal Bayar University Journal of Science, 21(3), 80-88. https://doi.org/10.18466/cbayarfbe.1732854
AMA Akgül MB, Erçel FS. Evaluation of the thermal performance of a cold plate with different fin structures for IGBT cooling. CBUJOS. September 2025;21(3):80-88. doi:10.18466/cbayarfbe.1732854
Chicago Akgül, M. Bahattin, and Furkan Sinan Erçel. “Evaluation of the Thermal Performance of a Cold Plate With Different Fin Structures for IGBT Cooling”. Celal Bayar University Journal of Science 21, no. 3 (September 2025): 80-88. https://doi.org/10.18466/cbayarfbe.1732854.
EndNote Akgül MB, Erçel FS (September 1, 2025) Evaluation of the thermal performance of a cold plate with different fin structures for IGBT cooling. Celal Bayar University Journal of Science 21 3 80–88.
IEEE M. B. Akgül and F. S. Erçel, “Evaluation of the thermal performance of a cold plate with different fin structures for IGBT cooling”, CBUJOS, vol. 21, no. 3, pp. 80–88, 2025, doi: 10.18466/cbayarfbe.1732854.
ISNAD Akgül, M. Bahattin - Erçel, Furkan Sinan. “Evaluation of the Thermal Performance of a Cold Plate With Different Fin Structures for IGBT Cooling”. Celal Bayar University Journal of Science 21/3 (September2025), 80-88. https://doi.org/10.18466/cbayarfbe.1732854.
JAMA Akgül MB, Erçel FS. Evaluation of the thermal performance of a cold plate with different fin structures for IGBT cooling. CBUJOS. 2025;21:80–88.
MLA Akgül, M. Bahattin and Furkan Sinan Erçel. “Evaluation of the Thermal Performance of a Cold Plate With Different Fin Structures for IGBT Cooling”. Celal Bayar University Journal of Science, vol. 21, no. 3, 2025, pp. 80-88, doi:10.18466/cbayarfbe.1732854.
Vancouver Akgül MB, Erçel FS. Evaluation of the thermal performance of a cold plate with different fin structures for IGBT cooling. CBUJOS. 2025;21(3):80-8.