Review Article
BibTex RIS Cite

Year 2025, Volume: 3 Issue: 2, 50 - 61, 07.01.2026

Abstract

References

  • REFERENCES
  • [1] International Energy Agency, The Future of Hydro-gen, IEA. Available at: https://www.iea.org/reports/the-future-of-hydrogen Accessed on May 13, 2025.
  • [2] International Renewable Energy Agency, Green Hydrogen: A Key Enabler of the Energy Transition, IRENA. Available at: https://www.irena.org/publica-tions, Accessed: Accessed on May 13, 2025.
  • [3] Bloomberg New Energy Finance. Global Hydrogen Market Overview, 2023.
  • [4] Switzer Manufacturing. Hydrogen Production: Ad-vantages & Disadvantages of Different Methods. Avaialble at: https://www.switzermfg.com/blog/hydrogen-production-advantages-disadvantag-es-of-different-methods/ Accessed on May 13, 2025.
  • [5] World Economic Forum. How Blue Hydrogen is Becoming a Key Strategy for Low-Carbon Energy Transition. Available at: https://www.weforum.org/agenda/2023/07/blue-hydrogen-energy-transition/ Accessed on May 13, 2025.
  • [6] Roy R, Antonini G, Hayibo KS, Rahman MM, Khan S, Tian W, et al. Comparative techno-environmental analysis of grey, blue, green/yellow and paleblue hydrogen production. Int J Hydrogen Energy 2025;116:200–210. [CrossRef]
  • [7] Zhang X, Liu Y, Zhang Y, Wang C, Zhao M. Technological evolution of large-scale blue hydrogen production. Nat Commun 2024;15:1234. [CrossRef]
  • [8] Natural Resources Canada. Shell Canada Energy Quest Project. Available at: https://natural-resources.canada.ca/funding-partnerships/shell-canada-energy-quest-project Accessed on Jul 27, 2025
  • [9] Honeywell. Low-Carbon Hydrogen Production Case Study, Available at: https://ess.honeywell.com/content/dam/ess/en/documents/document-lists/uop/case-study/hon-ess-uop-low-carbon-hydrogen-production-case-study.pdf Accessed on May 13, 2025.
  • [10] Khan MS, Rahman A, Tanveer M. Blue hydrogen production from natural gas reservoirs: A review. J Nat Gas Sci Eng 2023;105:104123.
  • [11] Howarth RW, Jacobson MZ. How green is blue hydrogen?, Energy Sci Eng 2021;9:1676–1687. [CrossRef]
  • [12] T.C. Enerji ve Tabii Kaynaklar Bakanlığı. Türkiye Hidrojen Stratejisi ve Yol Haritası. Available at: https://enerji.gov.tr/Media/Dizin/SGB/tr/Kurumsal_Politikalar/HSP/ETKB_Hidrojen_Stratejik_Plan2023.pdf Accessed on May 13, 2025.
  • [13] International Energy Agency. (2023). CCUS in clean energy transitions. Available at: https://www.iea.org/ reports/ccus-in-clean-energy-transitions Accessed on May 13, 2025.
  • [14] Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A, Brown S, et al. Carbon capture and storage (CCS): The way forward. Energy Environ Sci 2018;11:1062–1176. [CrossRef]
  • [15] Wang M, Stephenson P, Ramshaw C. Post-combustion CO₂ capture with chemical absorption: A review. Chem Eng Res Design 2011;89:1609–1624. [CrossRef]
  • [16] U.S. Department of Energy. (2022). Carbon capture, utilization, and storage (CCUS). Available at: https://www.energy.gov/fecm/carbon-capture-utilization-and-storage-research Accessed on Jan 06, 2026.
  • [17] Koç T, Arslan O. A review on the applicability of carbon capture and storage technologies in Turkiye. J Energy Markets Legislation 2022;15:85–102.
  • [18] Chalmers University of Technology. 2022. Chemical looping research reports. Available at: https://www. chalmers.se Accessed on Jan 06, 2026.
  • [19] AlgaePARC. 2022. Research projects on bio-based CO₂ capture. https://www.wur.nl/algaeparc Accessed on Jan 06, 2026.
  • [20] Ministry of Environment and Urbanization of Turkiye. (2021). Paris Agreement and net zero emissions target. Available at: https://www.csb.gov.tr/paris-anlasmasi-ve-net-sifir-emisyon-hedefi Accessed on Jan 06, 2026.
  • [21] TÜBİTAK Marmara Research Center. R&D activities on carbon capture and utilization technologies. Ankara: The Scientific and Technological Research Council of Turkiye (TÜBİTAK), 2022.
  • [22] Maden Tetkik ve Arama Genel Müdürlüğü. Türkiye’nin Bölgesel CO₂ Depolama Kapasite Haritası ve Jeolojik Uygunluk Raporu. Ankara: MTA Yayınları; 2022.
  • [23] Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) Marmara Araştırma Merkezi. Karbon Yakalama, Kullanım ve Depolama (CCUS) Teknolojileri Kapsamında Türkiye’nin Teknik Potansiyeli. Kocaeli: Enerji Enstitüsü Yayını; 2021.
  • [24] Borusan Ar-Ge. Gemlik CO₂ Mineralizasyon Pilot Tesisi: Teknik ve Ekonomik Değerlendirme Raporu. İstanbul: Borusan Holding Yayınları; 2023
  • [25] TÜBİTAK. Integrated Carbon Capture and Bio-Methanation in Anaerobic Systems (Proje No: 120Y156). TUBITAK ARBIS Proje Portalı. 2020. Availeble at: https://arbis.tubitak.gov.tr Accessed on Jan 06, 2026.
  • [26] Global CCS Institute. The global status of CCS 2023. Available at: https://www.globalccsinstitute.com/ resources/global-status-report/ Accessed on Jan 06, 2026.
  • [27] International Energy Agency (IEA). (2021). Net Zero by 2050: A Roadmap for the Global Energy Sector. Available at: https://www.iea.org/reports/net-zero-by-2050 Accessed on Jan 06, 2026.
  • [28] International Renewable Energy Agency (IRENA). (2023). World Energy Transitions Outlook 2023. Available at: https://www.irena.org/publications Accessed on Jan 06, 2026.
  • [29] Bloomberg New Energy Finance (BNEF). Hydrogen economy outlook. 2023. Available at: https:// about.bnef.com/blog/hydrogen-economy-outlook/ Aceesed on May 14, 2025.
  • [30] U.S. Department of Energy (DOE). Regional Clean Hydrogen Hubs. 2023. Available at: https://www. energy.gov/oced/regional-clean-hydrogen-hubs Accessed on May 14, 2025.
  • [31] European Hydrogen Backbone (EHB). (2023). EHB vision. Available at: https://www.ehb.eu/ Accessed on May 14, 2025.
  • [32] U.S. Department of Energy (DOE). 45Q Carbon Capture Tax Credit. 2022. Available at: https://www.energy.gov/fecm/45q-carbon-capture-tax-credit Accessed on May 14, 2025.
  • [33] European Environment Agency (EEA). EU Emissions Trading System data viewer. 2023. Available at: https://www.eea.europa.eu Accessed on May 14, 2025.
  • [34] Hydrogen Council. Hydrogen Insights 2023. Available at: https://hydrogencouncil.com/en/hydrogen- insights-2023 Accessed on May 14, 2025.
  • [35] IRENA. Hydrogen from renewable power. Technology Outlook for the Energy Transition, International Renewable Energy Agency, Abu Dhabi. 2018. Accessed on April 18, 2025.
  • [36] Morlanés N, Katikaneni SP, Paglieri SN, Harale A, Solami B, Sarathy SM, et al. A technological roadmap to the ammonia energy economy: Current state and missing technologies. Chem Eng J 2021;408:127310. [CrossRef]
  • [37] Moradpoor I, Syri S, Santasalo-Aarnio A. Green hydrogen production for oil refining–Finnish case. Renew Sustain Energy Rev 2023;175:113159. [CrossRef]
  • [38] International Energy Agency (IEA). The Future of Hydrogen. 2019. Available at: https://www.iea.org/ reports/the-future-of-hydrogen. Accessed on July 21, 2025.
  • [39] International Energy Agency IEA. Achieving Net Zero Heavy Industry Sectors. Available at: https://www.iea.org/reports/achieving-net-zero-heavy-industry-sectors-in-g7-members. Accessed on July 21, 2025.
  • [40] Methanol Institute. Methanol price and supply/demand. 2025. Available at: https://www.methanol.org/methanol-price-supply-demand/ Accessed on April 20, 2025
  • [41] AlHumaidan FS, Halabi MA, Rana MS, Vinoba M. Blue hydrogen: Current status and future technologies. Energy Convers Manag 2023;283:116840. [CrossRef]
  • [42] Wismann ST, Engbæk JS, Vendelbo SB, Bendixen FB, Eriksen WL, Aasberg-Petersen K, et al. Electrified methane reforming: A compact approach to greener industrial hydrogen production. Science 2019;364:756−759. [CrossRef]
  • [43] Naquash A, Qyyum MA, Chaniago YD, Riaz A, Sial NR, Islam M, et al. Membrane-and-Cryogenic-Assisted Hydrogen Separation and Purification Process. Energy Proceed 2021;24:0241. [CrossRef]
  • [44] Naquash A, Qyyum MA, Chaniago YD, Riaz A, Yehia F, Lim H, et al. Separation and purification of syngas-derived hydrogen: A comparative evaluation of membrane-and cryogenic-assisted approaches. Chemosphere 2023;313:137420. [CrossRef]
  • [45] Frei MS, Mondelli C, García-Muelas R, Kley KS, Puértolas B, López N, et al. Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO₂ hydrogenation. Nat Commun 2019;10:3377. [CrossRef]
  • [46] Delsman ER, Laarhoven BJPF, De Croon MHJM, Kramer GJ, & Schouten JC. Comparison between conventional fixed-bed and microreactor technology for a portable hydrogen production case. Chem Eng Res Design 2005;83:1063−1075. [CrossRef]
  • [47] Pak KS, Hong YS. Potential environmental ımpact evaluation of the methanol synthesis process by gas-to-methanol technology. ACS Omega 2025;10:13228−13235. [CrossRef]
  • [48] KFAS White paper. towards a hydrogen strategy for Kuwait. Kuwait Foundation for the Advancement of Sciences: Kuwait; 2021. p. 92.
  • [49] Bertone M, Stabile L, Cortellessa G, Arpino F, Buonanno, G. Techno-economic assessment of amine-based carbon capture in waste-to-energy incineration plant retrofit. Sustainability 2024;16:8468. [CrossRef]
  • [50] Sreńscek-Nazzal, J, Kiełbasa K. Advances in modification of commercial activated carbon for enhancement of CO₂ capture. Appl Surf Sci 2019;494:137–151. [CrossRef]
  • [51] Pasichnyk M. Membrane Technology for challenging separations: Removal of CO₂, SO2 and NOx from flue and waste gases. Sep Purif Technol 2023;323:124436. [CrossRef]
  • [52] Nemitallah MA, Habib MA, Badr HM, Said SA, Jamal A, Ben-Mansour R, et al. Oxy-fuel combustion technology: Current status, applications, and trends. Int J Energy Res 2017;41:1670–1708. [CrossRef]
  • [53] Seo SB, Kim HW, Kang SY, Go ES, Keel S. Techno- economic comparison between air-fired and oxy-fuel circulating fluidized bed power plants with ultra-supercritical cycle. Energy 2021;233:121217. [CrossRef]
  • [54] García-Luna S, Ortiz C, Carro A, Chacartegui R, Pérez-Maqueda LA. Oxygen production routes assessment for oxy-fuel combustion. Energy 2022;254:124303. [CrossRef]
  • [55] Tranier J-P, Dubettier Richard, Darde A, Perrin N. Air separation, flue gas compression and purification units for oxy-coal combustion systems. Energy Proceed 2011;4:966–971. [CrossRef]
  • [56] Watson JC, Pennisi KJ, Parrish C, Majumdar S. Techno-economic process optimization for a range of membrane performances: What provides real value for point-source carbon capture?” Carbon Capture Sci Technol 2024;11:100182. [CrossRef]
  • [57] IEA. Global Hydrogen Review 2023. International Energy Agency. 2023. Available at: https://www.iea.org/reports/global-hydrogen-review-2023 Accessed: 12 May 2025.
  • [58] Shell Quest Carbon Capture and Storage Project: Annual Report. 2022. https://www.shell.ca Accessed on 12 May 2025.
  • [59] Global CCS Institute. CO₂RE Database: Port Arthur CCS Project Profile. 2023. Available at: https://co2re.co Accessed on May 14, 2025.
  • [60] HyNet. HyNet North West: Low Carbon Hydrogen and Carbon Capture Project Overview. 2024. Available at: https://hynet.co.uk Accessed on May 14, 2025.
  • [61] Song C, Zhao Z, Liu Z. Evaluation of regional and temporal dynamics in CCUS-hydrogen development policy pathways: A data-driven framework. Renew Energy 2024;200:1500−1515.
  • [63] IRENA. Carbon Capture and Storage in Hydrogen Production: Technology Brief. International Renewable Energy Agency. 2022. https://www.irena.org/publications/2022/Mar/CCS-in-hydrogen-production Accessed on May 14, 2025.
  • [64] Rubin ES, Davison JE, Herzog HJ. The cost of CO₂ capture and storage. Int J Greenhouse Gas Control 2015;40:378–400. [CrossRef]
  • [65] Li R, Kawanami H. A recent review of primary hydrogen carriers, hydrogen production methods, and applications. Catalysts 2023;13:562. [CrossRef]

CCUS Integration in Hydrogen Production: Technological Advances, Sectoral Applications, and Future Perspective

Year 2025, Volume: 3 Issue: 2, 50 - 61, 07.01.2026

Abstract

The integration of Carbon Capture, Utilization and Storage (CCUS) technologies into hydrogen production is gaining prominence as a transitional solution to reduce emissions in the energy sector. This study explores the technical, environmental, and economic dimensions of blue hydrogen production, which is based on natural gas reforming methods such as Steam Methane Reforming (SMR) and Autothermal Reforming (ATR) combined with CCUS. While grey hydrogen has a high carbon footprint, blue hydrogen significantly lowers emissions, achieving reductions of up to 90% depending on carbon capture efficiency. The research also compares various CCUS technologies including post-combustion, pre-combustion, and oxy-fuel combustion, alongside emerging alternatives like membrane separation and chemical looping. A techno-economic analysis highlights the trade-offs between capture efficiency, energy demand, cost, and scalability. Global and national hydrogen strategies, including Türkiye’s National Hydrogen Strategy, are examined in terms of CCUS integration potential. The study concludes that although challenges such as infrastructure, cost, and policy remain, CCUS-enabled blue hydrogen plays a significant role in the global energy transition toward net-zero targets.

References

  • REFERENCES
  • [1] International Energy Agency, The Future of Hydro-gen, IEA. Available at: https://www.iea.org/reports/the-future-of-hydrogen Accessed on May 13, 2025.
  • [2] International Renewable Energy Agency, Green Hydrogen: A Key Enabler of the Energy Transition, IRENA. Available at: https://www.irena.org/publica-tions, Accessed: Accessed on May 13, 2025.
  • [3] Bloomberg New Energy Finance. Global Hydrogen Market Overview, 2023.
  • [4] Switzer Manufacturing. Hydrogen Production: Ad-vantages & Disadvantages of Different Methods. Avaialble at: https://www.switzermfg.com/blog/hydrogen-production-advantages-disadvantag-es-of-different-methods/ Accessed on May 13, 2025.
  • [5] World Economic Forum. How Blue Hydrogen is Becoming a Key Strategy for Low-Carbon Energy Transition. Available at: https://www.weforum.org/agenda/2023/07/blue-hydrogen-energy-transition/ Accessed on May 13, 2025.
  • [6] Roy R, Antonini G, Hayibo KS, Rahman MM, Khan S, Tian W, et al. Comparative techno-environmental analysis of grey, blue, green/yellow and paleblue hydrogen production. Int J Hydrogen Energy 2025;116:200–210. [CrossRef]
  • [7] Zhang X, Liu Y, Zhang Y, Wang C, Zhao M. Technological evolution of large-scale blue hydrogen production. Nat Commun 2024;15:1234. [CrossRef]
  • [8] Natural Resources Canada. Shell Canada Energy Quest Project. Available at: https://natural-resources.canada.ca/funding-partnerships/shell-canada-energy-quest-project Accessed on Jul 27, 2025
  • [9] Honeywell. Low-Carbon Hydrogen Production Case Study, Available at: https://ess.honeywell.com/content/dam/ess/en/documents/document-lists/uop/case-study/hon-ess-uop-low-carbon-hydrogen-production-case-study.pdf Accessed on May 13, 2025.
  • [10] Khan MS, Rahman A, Tanveer M. Blue hydrogen production from natural gas reservoirs: A review. J Nat Gas Sci Eng 2023;105:104123.
  • [11] Howarth RW, Jacobson MZ. How green is blue hydrogen?, Energy Sci Eng 2021;9:1676–1687. [CrossRef]
  • [12] T.C. Enerji ve Tabii Kaynaklar Bakanlığı. Türkiye Hidrojen Stratejisi ve Yol Haritası. Available at: https://enerji.gov.tr/Media/Dizin/SGB/tr/Kurumsal_Politikalar/HSP/ETKB_Hidrojen_Stratejik_Plan2023.pdf Accessed on May 13, 2025.
  • [13] International Energy Agency. (2023). CCUS in clean energy transitions. Available at: https://www.iea.org/ reports/ccus-in-clean-energy-transitions Accessed on May 13, 2025.
  • [14] Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A, Brown S, et al. Carbon capture and storage (CCS): The way forward. Energy Environ Sci 2018;11:1062–1176. [CrossRef]
  • [15] Wang M, Stephenson P, Ramshaw C. Post-combustion CO₂ capture with chemical absorption: A review. Chem Eng Res Design 2011;89:1609–1624. [CrossRef]
  • [16] U.S. Department of Energy. (2022). Carbon capture, utilization, and storage (CCUS). Available at: https://www.energy.gov/fecm/carbon-capture-utilization-and-storage-research Accessed on Jan 06, 2026.
  • [17] Koç T, Arslan O. A review on the applicability of carbon capture and storage technologies in Turkiye. J Energy Markets Legislation 2022;15:85–102.
  • [18] Chalmers University of Technology. 2022. Chemical looping research reports. Available at: https://www. chalmers.se Accessed on Jan 06, 2026.
  • [19] AlgaePARC. 2022. Research projects on bio-based CO₂ capture. https://www.wur.nl/algaeparc Accessed on Jan 06, 2026.
  • [20] Ministry of Environment and Urbanization of Turkiye. (2021). Paris Agreement and net zero emissions target. Available at: https://www.csb.gov.tr/paris-anlasmasi-ve-net-sifir-emisyon-hedefi Accessed on Jan 06, 2026.
  • [21] TÜBİTAK Marmara Research Center. R&D activities on carbon capture and utilization technologies. Ankara: The Scientific and Technological Research Council of Turkiye (TÜBİTAK), 2022.
  • [22] Maden Tetkik ve Arama Genel Müdürlüğü. Türkiye’nin Bölgesel CO₂ Depolama Kapasite Haritası ve Jeolojik Uygunluk Raporu. Ankara: MTA Yayınları; 2022.
  • [23] Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) Marmara Araştırma Merkezi. Karbon Yakalama, Kullanım ve Depolama (CCUS) Teknolojileri Kapsamında Türkiye’nin Teknik Potansiyeli. Kocaeli: Enerji Enstitüsü Yayını; 2021.
  • [24] Borusan Ar-Ge. Gemlik CO₂ Mineralizasyon Pilot Tesisi: Teknik ve Ekonomik Değerlendirme Raporu. İstanbul: Borusan Holding Yayınları; 2023
  • [25] TÜBİTAK. Integrated Carbon Capture and Bio-Methanation in Anaerobic Systems (Proje No: 120Y156). TUBITAK ARBIS Proje Portalı. 2020. Availeble at: https://arbis.tubitak.gov.tr Accessed on Jan 06, 2026.
  • [26] Global CCS Institute. The global status of CCS 2023. Available at: https://www.globalccsinstitute.com/ resources/global-status-report/ Accessed on Jan 06, 2026.
  • [27] International Energy Agency (IEA). (2021). Net Zero by 2050: A Roadmap for the Global Energy Sector. Available at: https://www.iea.org/reports/net-zero-by-2050 Accessed on Jan 06, 2026.
  • [28] International Renewable Energy Agency (IRENA). (2023). World Energy Transitions Outlook 2023. Available at: https://www.irena.org/publications Accessed on Jan 06, 2026.
  • [29] Bloomberg New Energy Finance (BNEF). Hydrogen economy outlook. 2023. Available at: https:// about.bnef.com/blog/hydrogen-economy-outlook/ Aceesed on May 14, 2025.
  • [30] U.S. Department of Energy (DOE). Regional Clean Hydrogen Hubs. 2023. Available at: https://www. energy.gov/oced/regional-clean-hydrogen-hubs Accessed on May 14, 2025.
  • [31] European Hydrogen Backbone (EHB). (2023). EHB vision. Available at: https://www.ehb.eu/ Accessed on May 14, 2025.
  • [32] U.S. Department of Energy (DOE). 45Q Carbon Capture Tax Credit. 2022. Available at: https://www.energy.gov/fecm/45q-carbon-capture-tax-credit Accessed on May 14, 2025.
  • [33] European Environment Agency (EEA). EU Emissions Trading System data viewer. 2023. Available at: https://www.eea.europa.eu Accessed on May 14, 2025.
  • [34] Hydrogen Council. Hydrogen Insights 2023. Available at: https://hydrogencouncil.com/en/hydrogen- insights-2023 Accessed on May 14, 2025.
  • [35] IRENA. Hydrogen from renewable power. Technology Outlook for the Energy Transition, International Renewable Energy Agency, Abu Dhabi. 2018. Accessed on April 18, 2025.
  • [36] Morlanés N, Katikaneni SP, Paglieri SN, Harale A, Solami B, Sarathy SM, et al. A technological roadmap to the ammonia energy economy: Current state and missing technologies. Chem Eng J 2021;408:127310. [CrossRef]
  • [37] Moradpoor I, Syri S, Santasalo-Aarnio A. Green hydrogen production for oil refining–Finnish case. Renew Sustain Energy Rev 2023;175:113159. [CrossRef]
  • [38] International Energy Agency (IEA). The Future of Hydrogen. 2019. Available at: https://www.iea.org/ reports/the-future-of-hydrogen. Accessed on July 21, 2025.
  • [39] International Energy Agency IEA. Achieving Net Zero Heavy Industry Sectors. Available at: https://www.iea.org/reports/achieving-net-zero-heavy-industry-sectors-in-g7-members. Accessed on July 21, 2025.
  • [40] Methanol Institute. Methanol price and supply/demand. 2025. Available at: https://www.methanol.org/methanol-price-supply-demand/ Accessed on April 20, 2025
  • [41] AlHumaidan FS, Halabi MA, Rana MS, Vinoba M. Blue hydrogen: Current status and future technologies. Energy Convers Manag 2023;283:116840. [CrossRef]
  • [42] Wismann ST, Engbæk JS, Vendelbo SB, Bendixen FB, Eriksen WL, Aasberg-Petersen K, et al. Electrified methane reforming: A compact approach to greener industrial hydrogen production. Science 2019;364:756−759. [CrossRef]
  • [43] Naquash A, Qyyum MA, Chaniago YD, Riaz A, Sial NR, Islam M, et al. Membrane-and-Cryogenic-Assisted Hydrogen Separation and Purification Process. Energy Proceed 2021;24:0241. [CrossRef]
  • [44] Naquash A, Qyyum MA, Chaniago YD, Riaz A, Yehia F, Lim H, et al. Separation and purification of syngas-derived hydrogen: A comparative evaluation of membrane-and cryogenic-assisted approaches. Chemosphere 2023;313:137420. [CrossRef]
  • [45] Frei MS, Mondelli C, García-Muelas R, Kley KS, Puértolas B, López N, et al. Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO₂ hydrogenation. Nat Commun 2019;10:3377. [CrossRef]
  • [46] Delsman ER, Laarhoven BJPF, De Croon MHJM, Kramer GJ, & Schouten JC. Comparison between conventional fixed-bed and microreactor technology for a portable hydrogen production case. Chem Eng Res Design 2005;83:1063−1075. [CrossRef]
  • [47] Pak KS, Hong YS. Potential environmental ımpact evaluation of the methanol synthesis process by gas-to-methanol technology. ACS Omega 2025;10:13228−13235. [CrossRef]
  • [48] KFAS White paper. towards a hydrogen strategy for Kuwait. Kuwait Foundation for the Advancement of Sciences: Kuwait; 2021. p. 92.
  • [49] Bertone M, Stabile L, Cortellessa G, Arpino F, Buonanno, G. Techno-economic assessment of amine-based carbon capture in waste-to-energy incineration plant retrofit. Sustainability 2024;16:8468. [CrossRef]
  • [50] Sreńscek-Nazzal, J, Kiełbasa K. Advances in modification of commercial activated carbon for enhancement of CO₂ capture. Appl Surf Sci 2019;494:137–151. [CrossRef]
  • [51] Pasichnyk M. Membrane Technology for challenging separations: Removal of CO₂, SO2 and NOx from flue and waste gases. Sep Purif Technol 2023;323:124436. [CrossRef]
  • [52] Nemitallah MA, Habib MA, Badr HM, Said SA, Jamal A, Ben-Mansour R, et al. Oxy-fuel combustion technology: Current status, applications, and trends. Int J Energy Res 2017;41:1670–1708. [CrossRef]
  • [53] Seo SB, Kim HW, Kang SY, Go ES, Keel S. Techno- economic comparison between air-fired and oxy-fuel circulating fluidized bed power plants with ultra-supercritical cycle. Energy 2021;233:121217. [CrossRef]
  • [54] García-Luna S, Ortiz C, Carro A, Chacartegui R, Pérez-Maqueda LA. Oxygen production routes assessment for oxy-fuel combustion. Energy 2022;254:124303. [CrossRef]
  • [55] Tranier J-P, Dubettier Richard, Darde A, Perrin N. Air separation, flue gas compression and purification units for oxy-coal combustion systems. Energy Proceed 2011;4:966–971. [CrossRef]
  • [56] Watson JC, Pennisi KJ, Parrish C, Majumdar S. Techno-economic process optimization for a range of membrane performances: What provides real value for point-source carbon capture?” Carbon Capture Sci Technol 2024;11:100182. [CrossRef]
  • [57] IEA. Global Hydrogen Review 2023. International Energy Agency. 2023. Available at: https://www.iea.org/reports/global-hydrogen-review-2023 Accessed: 12 May 2025.
  • [58] Shell Quest Carbon Capture and Storage Project: Annual Report. 2022. https://www.shell.ca Accessed on 12 May 2025.
  • [59] Global CCS Institute. CO₂RE Database: Port Arthur CCS Project Profile. 2023. Available at: https://co2re.co Accessed on May 14, 2025.
  • [60] HyNet. HyNet North West: Low Carbon Hydrogen and Carbon Capture Project Overview. 2024. Available at: https://hynet.co.uk Accessed on May 14, 2025.
  • [61] Song C, Zhao Z, Liu Z. Evaluation of regional and temporal dynamics in CCUS-hydrogen development policy pathways: A data-driven framework. Renew Energy 2024;200:1500−1515.
  • [63] IRENA. Carbon Capture and Storage in Hydrogen Production: Technology Brief. International Renewable Energy Agency. 2022. https://www.irena.org/publications/2022/Mar/CCS-in-hydrogen-production Accessed on May 14, 2025.
  • [64] Rubin ES, Davison JE, Herzog HJ. The cost of CO₂ capture and storage. Int J Greenhouse Gas Control 2015;40:378–400. [CrossRef]
  • [65] Li R, Kawanami H. A recent review of primary hydrogen carriers, hydrogen production methods, and applications. Catalysts 2023;13:562. [CrossRef]
There are 65 citations in total.

Details

Primary Language English
Subjects Environmentally Sustainable Engineering
Journal Section Review Article
Authors

İbrahim Çakıcı 0009-0009-0423-6022

Ensar Sakarya 0009-0002-7598-9709

Hibatallah Kazem 0009-0004-3279-6258

Kübra Al 0000-0001-5201-5245

Ender Ateş 0009-0002-3444-2686

Kadir Akgün 0009-0005-0348-3516

Submission Date May 25, 2025
Acceptance Date October 9, 2025
Publication Date January 7, 2026
Published in Issue Year 2025 Volume: 3 Issue: 2

Cite

Vancouver 1.Çakıcı İ, Sakarya E, Kazem H, Al K, Ateş E, Akgün K. CCUS Integration in Hydrogen Production: Technological Advances, Sectoral Applications, and Future Perspective. Clean Energy Technol J [Internet]. 2026 Jan. 1;3(2):50-61. Available from: https://izlik.org/JA23YJ65MJ