Research Article
BibTex RIS Cite

New types of connectedness and intermediate value theorem in ideal topological spaces

Year 2023, , 259 - 285, 30.03.2023
https://doi.org/10.31801/cfsuasmas.1075157

Abstract

The definitions of new type separated subsets are given in ideal topological spaces. By using these definitions, we introduce new types of connectedness. It is shown that these new types of connectedness are more general than some previously defined concepts of connectedness in ideal topological spaces. The new types of connectedness are compared with well-known connectedness in point-set topology. Then, the intermediate value theorem for ideal topological spaces is given. Also, for some special cases, it is shown that the intermediate value theorem in ideal topological spaces and the intermediate value theorem in topological spaces coincide.

Thanks

The first author would like to thank TUBITAK (The Scientific and Technological Research Council of Turkey) for their financial supports during his doctorate studies.

References

  • Al-Omari, A., Noiri, T., Local closure functions in ideal topological spaces, Novi Sad J. Math., 43(2) (2013), 139-149.
  • Al-Omeri, W., Noorani, M., Al-Omari, A., a-local function and its properties in ideal topological spaces, Fasc. Math., 53 (2014), 5-15.
  • Dontchev, J., Ganster, M., Rose D. A., Ideal resolvability, Topology Appl., 93(1) (1999), 1-16. https://doi.org/10.1016/s0166-8641(97)00257-5
  • Ekici, E., On $I$-Alexandroff and $I_{g}$-Alexandroff ideal topological spaces, Filomat, 25(4) (2011), 99-108. https://doi.org/10.2298/fil1104099e
  • Engelking, R., General Topology, Heldermann Verlag, Berlin, 1989.
  • Freud, G., Ein beitrag zu dem satze von Cantor und Bendixson, Acta Math. Hungar., 9 (1958), 333-336. https://doi.org/10.1007/bf02020262
  • Güldürdek, A., Ideal Rothberger spaces, Hacet. J. Math. Stat., 47(1) (2018), 69–75. 1015672/HJMS.2017.445
  • Hayashi, E., Topologies defined by local properties, Math. Ann., 156 (1964), 205-215. https://doi.org/10.1007/bf01363287
  • Islam, M. M., Modak, S., Second approximation of local functions in ideal topological spaces, Acta Comment. Univ. Tartu. Math., 22(2) (2018), 245-255. https://doi.org/10.12697/acutm.2018.22.20
  • Jankovic, D., Hamlett T. R., New topologies from old via ideals, Amer. Math. Monthly, 97(4) (1992), 295-310. https://doi.org/10.2307/2324512
  • Kandil, A., Tantawy O. A. E., El-Sheikh, S. A., Abd El-latif, A. M., Soft ideal theory, soft local function and generated soft topological spaces, Appl. Math. Inf. Sci., 8(4) (2014), 1595-1603. https://doi.org/10.12785/amis/080413
  • Keskin, A., Yüksel, S¸., Noiri, T., On I-extremally disconnected spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 56(1) (2007), 33-40. https://doi.org/10.1501/commua1 0000000195
  • Khan, M., Noiri, T., Semi-local functions in ideal topological spaces, J. Adv. Res. Pure Math., 2(1) (2010), 36-42. 10.5373/jarpm.237.100909
  • Kilinc, S., More on $∗_{∗}$-Connected, Matematichki Bilten, 43(2) (2019), 53-60.
  • Kule, M., Dost, Ş., Texture spaces with ideal, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68(2) (2019), 1596-1610. https://doi.org/10.31801/cfsuasmas.416238
  • Kuratowski, K., Topology Volume I, Academic Press, New York-London, 1966.
  • Li, Z., Lin, F., On I -Baire spaces, Filomat, 27(2) (2013), 301-310. https://doi.org/10.2298/FIL1302301L
  • Modak, S., Noiri, T., A weaker form of connectedness, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 65(1) (2016), 49-52. https://doi.org/10.1501/Commua1 0000000743
  • Modak, S., Grill-filter space, Journal of the Indian Math. Soc., 80(3-4) (2013), 313-320.
  • Modak, S., Noiri, T., Connectedness of ideal topological spaces, Filomat, 29(4) (2015), 661-665. https://doi.org/10.2298/FIL1504661M
  • Modak, S., Islam, M. M., More on α-topological spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 66(2) (2017), 323–331. https://doi.org/10.1501/Commua 10000000822
  • Modak, S., Minimal spaces with a mathematical structure, J. Assoc. Arab Univ. Basic Appl. Sci., 22(1) (2018), 98-101. https://doi.org/10.1016/j.jaubas.2016.05.005
  • Modak, S., Islam M. M., On ∗ and ψ operators in topological spaces with ideals, Trans. A. Razmadze Math. Inst., 172 (2018), 491-497. https://doi.org/10.1016/j.trmi.2018.07.002
  • Modak, S., Selim, S., Set operators and associated functions, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 70(1) (2021), 456-467. https://doi.org/10.31801/cfsuasmas.644689
  • Munkres, J. R., Topology A First Course, Prentice-Hall, Englewood Cliffs N. J., 1974.
  • Pachon Rubiano, N. R., A generalization of connectedness via ideals, Armen.J.Math., 14(7) (2022), 1-18. https://doi.org/10.52737/18291163-2022.14.7-1-18
  • Pavlovic, A., Local function versus local closure function in ideal topological spaces, Filomat, 30(14) (2016), 3725-3731. https://doi.org/10.2298/fil1614725p
  • Sarker, D., Fuzzy ideal theory, Fuzzy local function and generated fuzzy topology, Fuzzy Sets and Systems, 87(1) (1997), 117-123. https://doi.org/10.1016/S0165-0114(96)00032-2
  • Selim, S., Islam, M. M., Modak, S., Common properties and approximations of local function and set operator ψ, Cumhuriyet Sci. J., 41(2) (2020), 360-368. https://doi.org/10.17776/csj.644158
  • Tunc, A. N., Yıldırım, ¨ O. S., New sets obtained by local closure functions, Ann. Pure and Appl. Math. Sci., 1(1) (2021), 50-59. http://doi.org/10.26637/aopams11/006
  • Tyagı, B. K., Bhardwaj, M., Sıngh, S., $Cl^*$-connectedness and $Cl-Cl^*$-connectedness in ideal topological space, Matematichki Bilten, 42(2) (2018), 91–100.
  • Willard, S., General Topology, Addison-Wesley Publishing Company, Reading, 1970.
  • Vaidyanathswamy, R., The localisation theory in set topology, Proc. Indian Acad. Sci., 20 (1945), 51-61. https://doi.org/10.1007/bf03048958
  • Velicko, N. V., H-closed topological spaces, Amer. Math. Soc., 78(2) (1968), 103-118. https://doi.org/10.1090/trans2/078/05
  • Yalaz, F., Kaymakcı, A. K., Weak semi-local functions in ideal topological spaces, Turk. J. Math. Comput. Sci., 11 (2019), 137-140.
  • Yalaz, F., Kaymakcı, A. K., New topologies from obtained operators via weak semi-local function and some comparisons, Filomat, 15(35) (2021), 5073-5081. https://doi.org/10.2298/FIL2115073Y
Year 2023, , 259 - 285, 30.03.2023
https://doi.org/10.31801/cfsuasmas.1075157

Abstract

References

  • Al-Omari, A., Noiri, T., Local closure functions in ideal topological spaces, Novi Sad J. Math., 43(2) (2013), 139-149.
  • Al-Omeri, W., Noorani, M., Al-Omari, A., a-local function and its properties in ideal topological spaces, Fasc. Math., 53 (2014), 5-15.
  • Dontchev, J., Ganster, M., Rose D. A., Ideal resolvability, Topology Appl., 93(1) (1999), 1-16. https://doi.org/10.1016/s0166-8641(97)00257-5
  • Ekici, E., On $I$-Alexandroff and $I_{g}$-Alexandroff ideal topological spaces, Filomat, 25(4) (2011), 99-108. https://doi.org/10.2298/fil1104099e
  • Engelking, R., General Topology, Heldermann Verlag, Berlin, 1989.
  • Freud, G., Ein beitrag zu dem satze von Cantor und Bendixson, Acta Math. Hungar., 9 (1958), 333-336. https://doi.org/10.1007/bf02020262
  • Güldürdek, A., Ideal Rothberger spaces, Hacet. J. Math. Stat., 47(1) (2018), 69–75. 1015672/HJMS.2017.445
  • Hayashi, E., Topologies defined by local properties, Math. Ann., 156 (1964), 205-215. https://doi.org/10.1007/bf01363287
  • Islam, M. M., Modak, S., Second approximation of local functions in ideal topological spaces, Acta Comment. Univ. Tartu. Math., 22(2) (2018), 245-255. https://doi.org/10.12697/acutm.2018.22.20
  • Jankovic, D., Hamlett T. R., New topologies from old via ideals, Amer. Math. Monthly, 97(4) (1992), 295-310. https://doi.org/10.2307/2324512
  • Kandil, A., Tantawy O. A. E., El-Sheikh, S. A., Abd El-latif, A. M., Soft ideal theory, soft local function and generated soft topological spaces, Appl. Math. Inf. Sci., 8(4) (2014), 1595-1603. https://doi.org/10.12785/amis/080413
  • Keskin, A., Yüksel, S¸., Noiri, T., On I-extremally disconnected spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 56(1) (2007), 33-40. https://doi.org/10.1501/commua1 0000000195
  • Khan, M., Noiri, T., Semi-local functions in ideal topological spaces, J. Adv. Res. Pure Math., 2(1) (2010), 36-42. 10.5373/jarpm.237.100909
  • Kilinc, S., More on $∗_{∗}$-Connected, Matematichki Bilten, 43(2) (2019), 53-60.
  • Kule, M., Dost, Ş., Texture spaces with ideal, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68(2) (2019), 1596-1610. https://doi.org/10.31801/cfsuasmas.416238
  • Kuratowski, K., Topology Volume I, Academic Press, New York-London, 1966.
  • Li, Z., Lin, F., On I -Baire spaces, Filomat, 27(2) (2013), 301-310. https://doi.org/10.2298/FIL1302301L
  • Modak, S., Noiri, T., A weaker form of connectedness, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 65(1) (2016), 49-52. https://doi.org/10.1501/Commua1 0000000743
  • Modak, S., Grill-filter space, Journal of the Indian Math. Soc., 80(3-4) (2013), 313-320.
  • Modak, S., Noiri, T., Connectedness of ideal topological spaces, Filomat, 29(4) (2015), 661-665. https://doi.org/10.2298/FIL1504661M
  • Modak, S., Islam, M. M., More on α-topological spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 66(2) (2017), 323–331. https://doi.org/10.1501/Commua 10000000822
  • Modak, S., Minimal spaces with a mathematical structure, J. Assoc. Arab Univ. Basic Appl. Sci., 22(1) (2018), 98-101. https://doi.org/10.1016/j.jaubas.2016.05.005
  • Modak, S., Islam M. M., On ∗ and ψ operators in topological spaces with ideals, Trans. A. Razmadze Math. Inst., 172 (2018), 491-497. https://doi.org/10.1016/j.trmi.2018.07.002
  • Modak, S., Selim, S., Set operators and associated functions, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 70(1) (2021), 456-467. https://doi.org/10.31801/cfsuasmas.644689
  • Munkres, J. R., Topology A First Course, Prentice-Hall, Englewood Cliffs N. J., 1974.
  • Pachon Rubiano, N. R., A generalization of connectedness via ideals, Armen.J.Math., 14(7) (2022), 1-18. https://doi.org/10.52737/18291163-2022.14.7-1-18
  • Pavlovic, A., Local function versus local closure function in ideal topological spaces, Filomat, 30(14) (2016), 3725-3731. https://doi.org/10.2298/fil1614725p
  • Sarker, D., Fuzzy ideal theory, Fuzzy local function and generated fuzzy topology, Fuzzy Sets and Systems, 87(1) (1997), 117-123. https://doi.org/10.1016/S0165-0114(96)00032-2
  • Selim, S., Islam, M. M., Modak, S., Common properties and approximations of local function and set operator ψ, Cumhuriyet Sci. J., 41(2) (2020), 360-368. https://doi.org/10.17776/csj.644158
  • Tunc, A. N., Yıldırım, ¨ O. S., New sets obtained by local closure functions, Ann. Pure and Appl. Math. Sci., 1(1) (2021), 50-59. http://doi.org/10.26637/aopams11/006
  • Tyagı, B. K., Bhardwaj, M., Sıngh, S., $Cl^*$-connectedness and $Cl-Cl^*$-connectedness in ideal topological space, Matematichki Bilten, 42(2) (2018), 91–100.
  • Willard, S., General Topology, Addison-Wesley Publishing Company, Reading, 1970.
  • Vaidyanathswamy, R., The localisation theory in set topology, Proc. Indian Acad. Sci., 20 (1945), 51-61. https://doi.org/10.1007/bf03048958
  • Velicko, N. V., H-closed topological spaces, Amer. Math. Soc., 78(2) (1968), 103-118. https://doi.org/10.1090/trans2/078/05
  • Yalaz, F., Kaymakcı, A. K., Weak semi-local functions in ideal topological spaces, Turk. J. Math. Comput. Sci., 11 (2019), 137-140.
  • Yalaz, F., Kaymakcı, A. K., New topologies from obtained operators via weak semi-local function and some comparisons, Filomat, 15(35) (2021), 5073-5081. https://doi.org/10.2298/FIL2115073Y
There are 36 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Ferit Yalaz 0000-0001-6805-9357

Aynur Keskin Kaymakcı 0000-0001-5909-8477

Publication Date March 30, 2023
Submission Date February 17, 2022
Acceptance Date October 6, 2022
Published in Issue Year 2023

Cite

APA Yalaz, F., & Keskin Kaymakcı, A. (2023). New types of connectedness and intermediate value theorem in ideal topological spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(1), 259-285. https://doi.org/10.31801/cfsuasmas.1075157
AMA Yalaz F, Keskin Kaymakcı A. New types of connectedness and intermediate value theorem in ideal topological spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. March 2023;72(1):259-285. doi:10.31801/cfsuasmas.1075157
Chicago Yalaz, Ferit, and Aynur Keskin Kaymakcı. “New Types of Connectedness and Intermediate Value Theorem in Ideal Topological Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72, no. 1 (March 2023): 259-85. https://doi.org/10.31801/cfsuasmas.1075157.
EndNote Yalaz F, Keskin Kaymakcı A (March 1, 2023) New types of connectedness and intermediate value theorem in ideal topological spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 1 259–285.
IEEE F. Yalaz and A. Keskin Kaymakcı, “New types of connectedness and intermediate value theorem in ideal topological spaces”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 72, no. 1, pp. 259–285, 2023, doi: 10.31801/cfsuasmas.1075157.
ISNAD Yalaz, Ferit - Keskin Kaymakcı, Aynur. “New Types of Connectedness and Intermediate Value Theorem in Ideal Topological Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/1 (March 2023), 259-285. https://doi.org/10.31801/cfsuasmas.1075157.
JAMA Yalaz F, Keskin Kaymakcı A. New types of connectedness and intermediate value theorem in ideal topological spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:259–285.
MLA Yalaz, Ferit and Aynur Keskin Kaymakcı. “New Types of Connectedness and Intermediate Value Theorem in Ideal Topological Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 72, no. 1, 2023, pp. 259-85, doi:10.31801/cfsuasmas.1075157.
Vancouver Yalaz F, Keskin Kaymakcı A. New types of connectedness and intermediate value theorem in ideal topological spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(1):259-85.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.