Research Article
BibTex RIS Cite

Normal automorphisms of free metabelian Leibniz algebras

Year 2024, , 147 - 152, 16.03.2024
https://doi.org/10.31801/cfsuasmas.1265768

Abstract

Let $\mathfrak{M}$ be a free metabelian Leibniz algebra generating set $X=\{x_{1},...,x_{n}\}$ over the field $\mathfrak{K}$ of characteristic $0$. An automorphism $ \phi $ of $\mathfrak{M}$ is said to be normal automorphism if each ideal of $\mathfrak{M}$ is invariant under $ \phi $. In this work, it is proven that every normal automorphism of $\mathfrak{M}$ is an IA-automorphism and the group of normal automorphisms coincides with the group of inner automorphisms.

References

  • Abdykhalykov, A. T., Mikhalev, A. A., Umirbaev, U. U., Automorphisms of two-generated free Leibniz algebras, Comm. Algebra, 29(7) (2001), 2953-2960. https://doi.org/10.1081/AGB-4998
  • Bloh, A., A generalization of the concept of a Lie algebra, Dokl. Akad. Nauk SSSR, 165(3) (1965), 471-473. English translation: Sov. Math., Dokl., 6 (1965), 1450-1452.
  • Drensky, V., Cattaneo, G. M. P., Varieties of metabelian Leibniz algebras, Journal of Algebra and Its Appl., 1(1) (2002), 31-50. https://doi.org/10.1142/S0219498802000033
  • Endimioni, G., Normal automorphisms of a free metabelian nilpotent group, Glasgow Math. J., 52 (2010), 169-177. https://doi.org/10.1017/S0017089509990267
  • Jarden, M., Ritter, J., Normal automorphisms of absolute Galois groups of p-adic fields, Duke Math. J., 47 (1980). https://doi.org/10.1215/S0012-7094-80-04705-5
  • Fındık, S¸., Normal and normally outer automorphisms of free metabelian nilpotent Lie algebras, Serdica Math. J., 36 (2010), 171-210.
  • Fındık, S¸., Özkurt, Z., Symmetric polynomials in Leibniz algebras and their inner automorphisms, Turkish Journal of Mathematics, 44 (2020), 2306-2311. https://doi.org/10.3906/mat-2006-44
  • Loday, J. L., Une version non commutative des alg`ebres de Lie: les algebres de Leibniz, Enseign. Math., 39 (1993), 269-293.
  • Loday, J. L., Pirashvili, T., Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann., 296 (1993), 139-158. https://doi.org/10.1007/BF01445099
  • Lubotzky, A., Normal automorphisms of free groups, J. Algebra, 63 (1980), 494. https://doi.org/10.1016/0021-8693(80)90086-1
  • Mikhalev, A. A., Umirbaev, U. U., Subalgebras of free Leibniz algebras, Communications in Algebra, 26 (1998), 435-446. https://doi.org/10.1080/00927879808826139
  • Öğüşü, N. S¸., Normal automorphisms of the metabelian product of free abelian Lie algebra, Algebra and Discrete Mathematics, 30(2) (2020), 230-234. http://dx.doi.org/10.12958/adm1258
  • Özkurt, Z., Orbits and test elements in free Leibniz algebras of rank two, Communications in Algebra, 43(8) (2015), 3534-3544. https://doi.org/10.1080/00927872.2014.982806
  • Romankov, V. A., Normal automorphisms of discrete groups, Sib. Mat. Zh., 24(4) (1983), 138-149. English translation: Siberian Math.J., 24 (1983), 604-614.
  • Romanovskii, N. S., Normal automorphisms of free solvable pro-p-groups, Algebra Logika, 36(4) (1997), 441-453, English translation: Algebra Log., 36(4) (1997), 257-263. https://doi.org/10.1007/BF02261748
  • Shahryari, M., Hall bases for free Leibniz algebras, Bull. Iranian Math. Soc., 45(2) (2019), 617-625. https://doi.org/10.1007/s41980-018-0153-3
  • Taş Adiyaman, T., Özkurt, Z., Automorphisms of free metabelian Leibniz algebras of rank three, Turk. J. Math., 43(5) (2019), 2262-2274. https://doi.org/10.3906/mat-1903-104
  • Taş, Adiyaman, T., Özkurt, Z., Automorphisms of free metabelian Leibniz algebras. Comm. Algebra, 49(10) (2021), 4348-4359. https://doi.org/10.1080/00927872.2021.1919690
  • Timoshenko, E. I., Normal automorphisms of a soluble product of abelian groups, Sib. Mat. Zh., 56(1) (2015), 227-236. English translation: Siberian Math. J., 56(1) (2015), 191-198. https://doi.org/10.1134/S0037446615010188
Year 2024, , 147 - 152, 16.03.2024
https://doi.org/10.31801/cfsuasmas.1265768

Abstract

References

  • Abdykhalykov, A. T., Mikhalev, A. A., Umirbaev, U. U., Automorphisms of two-generated free Leibniz algebras, Comm. Algebra, 29(7) (2001), 2953-2960. https://doi.org/10.1081/AGB-4998
  • Bloh, A., A generalization of the concept of a Lie algebra, Dokl. Akad. Nauk SSSR, 165(3) (1965), 471-473. English translation: Sov. Math., Dokl., 6 (1965), 1450-1452.
  • Drensky, V., Cattaneo, G. M. P., Varieties of metabelian Leibniz algebras, Journal of Algebra and Its Appl., 1(1) (2002), 31-50. https://doi.org/10.1142/S0219498802000033
  • Endimioni, G., Normal automorphisms of a free metabelian nilpotent group, Glasgow Math. J., 52 (2010), 169-177. https://doi.org/10.1017/S0017089509990267
  • Jarden, M., Ritter, J., Normal automorphisms of absolute Galois groups of p-adic fields, Duke Math. J., 47 (1980). https://doi.org/10.1215/S0012-7094-80-04705-5
  • Fındık, S¸., Normal and normally outer automorphisms of free metabelian nilpotent Lie algebras, Serdica Math. J., 36 (2010), 171-210.
  • Fındık, S¸., Özkurt, Z., Symmetric polynomials in Leibniz algebras and their inner automorphisms, Turkish Journal of Mathematics, 44 (2020), 2306-2311. https://doi.org/10.3906/mat-2006-44
  • Loday, J. L., Une version non commutative des alg`ebres de Lie: les algebres de Leibniz, Enseign. Math., 39 (1993), 269-293.
  • Loday, J. L., Pirashvili, T., Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann., 296 (1993), 139-158. https://doi.org/10.1007/BF01445099
  • Lubotzky, A., Normal automorphisms of free groups, J. Algebra, 63 (1980), 494. https://doi.org/10.1016/0021-8693(80)90086-1
  • Mikhalev, A. A., Umirbaev, U. U., Subalgebras of free Leibniz algebras, Communications in Algebra, 26 (1998), 435-446. https://doi.org/10.1080/00927879808826139
  • Öğüşü, N. S¸., Normal automorphisms of the metabelian product of free abelian Lie algebra, Algebra and Discrete Mathematics, 30(2) (2020), 230-234. http://dx.doi.org/10.12958/adm1258
  • Özkurt, Z., Orbits and test elements in free Leibniz algebras of rank two, Communications in Algebra, 43(8) (2015), 3534-3544. https://doi.org/10.1080/00927872.2014.982806
  • Romankov, V. A., Normal automorphisms of discrete groups, Sib. Mat. Zh., 24(4) (1983), 138-149. English translation: Siberian Math.J., 24 (1983), 604-614.
  • Romanovskii, N. S., Normal automorphisms of free solvable pro-p-groups, Algebra Logika, 36(4) (1997), 441-453, English translation: Algebra Log., 36(4) (1997), 257-263. https://doi.org/10.1007/BF02261748
  • Shahryari, M., Hall bases for free Leibniz algebras, Bull. Iranian Math. Soc., 45(2) (2019), 617-625. https://doi.org/10.1007/s41980-018-0153-3
  • Taş Adiyaman, T., Özkurt, Z., Automorphisms of free metabelian Leibniz algebras of rank three, Turk. J. Math., 43(5) (2019), 2262-2274. https://doi.org/10.3906/mat-1903-104
  • Taş, Adiyaman, T., Özkurt, Z., Automorphisms of free metabelian Leibniz algebras. Comm. Algebra, 49(10) (2021), 4348-4359. https://doi.org/10.1080/00927872.2021.1919690
  • Timoshenko, E. I., Normal automorphisms of a soluble product of abelian groups, Sib. Mat. Zh., 56(1) (2015), 227-236. English translation: Siberian Math. J., 56(1) (2015), 191-198. https://doi.org/10.1134/S0037446615010188
There are 19 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Zeynep Yaptı Özkurt 0000-0001-9703-3463

Publication Date March 16, 2024
Submission Date March 15, 2023
Acceptance Date October 9, 2023
Published in Issue Year 2024

Cite

APA Yaptı Özkurt, Z. (2024). Normal automorphisms of free metabelian Leibniz algebras. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(1), 147-152. https://doi.org/10.31801/cfsuasmas.1265768
AMA Yaptı Özkurt Z. Normal automorphisms of free metabelian Leibniz algebras. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. March 2024;73(1):147-152. doi:10.31801/cfsuasmas.1265768
Chicago Yaptı Özkurt, Zeynep. “Normal Automorphisms of Free Metabelian Leibniz Algebras”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 1 (March 2024): 147-52. https://doi.org/10.31801/cfsuasmas.1265768.
EndNote Yaptı Özkurt Z (March 1, 2024) Normal automorphisms of free metabelian Leibniz algebras. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 1 147–152.
IEEE Z. Yaptı Özkurt, “Normal automorphisms of free metabelian Leibniz algebras”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 1, pp. 147–152, 2024, doi: 10.31801/cfsuasmas.1265768.
ISNAD Yaptı Özkurt, Zeynep. “Normal Automorphisms of Free Metabelian Leibniz Algebras”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/1 (March 2024), 147-152. https://doi.org/10.31801/cfsuasmas.1265768.
JAMA Yaptı Özkurt Z. Normal automorphisms of free metabelian Leibniz algebras. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:147–152.
MLA Yaptı Özkurt, Zeynep. “Normal Automorphisms of Free Metabelian Leibniz Algebras”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 1, 2024, pp. 147-52, doi:10.31801/cfsuasmas.1265768.
Vancouver Yaptı Özkurt Z. Normal automorphisms of free metabelian Leibniz algebras. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(1):147-52.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.