Research Article
BibTex RIS Cite

Semiregular, semiperfect and semipotent matrix rings relative to an ideal

Year 2024, , 211 - 221, 16.03.2024
https://doi.org/10.31801/cfsuasmas.1307158

Abstract

This paper investigates relative ring theoretical properties in the context of formal triangular matrix rings. The first aim is to study the semiregularity of formal triangular matrix rings relative to an ideal. We prove that the formal triangular matrix ring $T$ is $T'$-semiregular if and only if $A$ is $I$-semiregular, $B$ is $K$-semiregular and $N=M$ for an ideal $T'=\bigl(\begin{smallmatrix}
I & 0\\
N & K
\end{smallmatrix}\bigr)$ of $T=\bigl(\begin{smallmatrix}
A & 0\\
M & B
\end{smallmatrix}\bigr).$ We also discuss the relative semiperfect formal triangular matrix rings in relation to the strong lifting property of ideals. Moreover, we have considered the behavior of relative semipotent and potent property of formal triangular matrix rings. Several examples are provided throughout the paper in order to highlight our results.

References

  • Altun Özarslan, M, Lifting properties of formal triangular matrix rings, RACSAM, 115(3) (2021), Paper No. 104, 13 pp. https://doi.org/10.1007/s13398-021-01044-0
  • Berberian, S. K., The center of a corner of a ring, J. Algebra, 71(2) (1981), 515-523. https://doi.org/10.1016/0021-8693(81)90191-5
  • Goodearl, K. R., Ring Theory. Nonsingular Rings and Modules, Monographs and Textbooks in Pure and Appl. Math., 33, Marcel Dekker, New York, 1976.
  • Haghany, A, Varadarajan, K., Study of formal triangular matrix rings, Comm. Algebra, 27 (1999), 5507-5525. https://doi.org/10.1080/00927879908826770
  • Herstein, I. N., A counter example in Noetherian rings, Proc. Nat. Acad. Sci. U.S.A., 54 (1965), 1036-1037. https://doi.org/10.1073/pnas.54.4.1036
  • Hong, C. Y., Kim, N. K., Lee, Y., Exchange rings and their extensions, J. Pure Appl. Algebra, 179 (2003), 117-126. https://doi.org/10.1016/S0022-4049(02)00299-2
  • Nicholson, W. K., Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., 229 (1977), 269-278. https://doi.org/10.1090/S0002-9947-1977-0439876-2
  • Nicholson, W. K., Yousif, M.F., Weakly continuous and C2-rings, Comm. Algebra, 29 (2001), 2429-2446. https://doi.org/10.1081/AGB-100002399
  • Nicholson, W. K., Zhou, Y, Strong lifting, J. Algebra, 285(2) (2005), 795-818. https://doi.org/10.1016/j.jalgebra.2004.11.019
  • Yousif, M. F., Zhou, Y, Semiregular, semiperfect and perfect rings relative to an ideal, Rocky Mountain J. Math., 32 (2002), 1651-1671. https://doi.org/10.1216/rmjm/1181070046
Year 2024, , 211 - 221, 16.03.2024
https://doi.org/10.31801/cfsuasmas.1307158

Abstract

References

  • Altun Özarslan, M, Lifting properties of formal triangular matrix rings, RACSAM, 115(3) (2021), Paper No. 104, 13 pp. https://doi.org/10.1007/s13398-021-01044-0
  • Berberian, S. K., The center of a corner of a ring, J. Algebra, 71(2) (1981), 515-523. https://doi.org/10.1016/0021-8693(81)90191-5
  • Goodearl, K. R., Ring Theory. Nonsingular Rings and Modules, Monographs and Textbooks in Pure and Appl. Math., 33, Marcel Dekker, New York, 1976.
  • Haghany, A, Varadarajan, K., Study of formal triangular matrix rings, Comm. Algebra, 27 (1999), 5507-5525. https://doi.org/10.1080/00927879908826770
  • Herstein, I. N., A counter example in Noetherian rings, Proc. Nat. Acad. Sci. U.S.A., 54 (1965), 1036-1037. https://doi.org/10.1073/pnas.54.4.1036
  • Hong, C. Y., Kim, N. K., Lee, Y., Exchange rings and their extensions, J. Pure Appl. Algebra, 179 (2003), 117-126. https://doi.org/10.1016/S0022-4049(02)00299-2
  • Nicholson, W. K., Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., 229 (1977), 269-278. https://doi.org/10.1090/S0002-9947-1977-0439876-2
  • Nicholson, W. K., Yousif, M.F., Weakly continuous and C2-rings, Comm. Algebra, 29 (2001), 2429-2446. https://doi.org/10.1081/AGB-100002399
  • Nicholson, W. K., Zhou, Y, Strong lifting, J. Algebra, 285(2) (2005), 795-818. https://doi.org/10.1016/j.jalgebra.2004.11.019
  • Yousif, M. F., Zhou, Y, Semiregular, semiperfect and perfect rings relative to an ideal, Rocky Mountain J. Math., 32 (2002), 1651-1671. https://doi.org/10.1216/rmjm/1181070046
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Meltem Altun Özarslan 0000-0001-9926-6770

Publication Date March 16, 2024
Submission Date May 30, 2023
Acceptance Date November 5, 2023
Published in Issue Year 2024

Cite

APA Altun Özarslan, M. (2024). Semiregular, semiperfect and semipotent matrix rings relative to an ideal. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(1), 211-221. https://doi.org/10.31801/cfsuasmas.1307158
AMA Altun Özarslan M. Semiregular, semiperfect and semipotent matrix rings relative to an ideal. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. March 2024;73(1):211-221. doi:10.31801/cfsuasmas.1307158
Chicago Altun Özarslan, Meltem. “Semiregular, Semiperfect and Semipotent Matrix Rings Relative to an Ideal”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 1 (March 2024): 211-21. https://doi.org/10.31801/cfsuasmas.1307158.
EndNote Altun Özarslan M (March 1, 2024) Semiregular, semiperfect and semipotent matrix rings relative to an ideal. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 1 211–221.
IEEE M. Altun Özarslan, “Semiregular, semiperfect and semipotent matrix rings relative to an ideal”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 1, pp. 211–221, 2024, doi: 10.31801/cfsuasmas.1307158.
ISNAD Altun Özarslan, Meltem. “Semiregular, Semiperfect and Semipotent Matrix Rings Relative to an Ideal”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/1 (March 2024), 211-221. https://doi.org/10.31801/cfsuasmas.1307158.
JAMA Altun Özarslan M. Semiregular, semiperfect and semipotent matrix rings relative to an ideal. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:211–221.
MLA Altun Özarslan, Meltem. “Semiregular, Semiperfect and Semipotent Matrix Rings Relative to an Ideal”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 1, 2024, pp. 211-2, doi:10.31801/cfsuasmas.1307158.
Vancouver Altun Özarslan M. Semiregular, semiperfect and semipotent matrix rings relative to an ideal. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(1):211-2.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.