Research Article
BibTex RIS Cite
Year 2020, , 613 - 628, 30.06.2020
https://doi.org/10.31801/cfsuasmas.484452

Abstract

References

  • Alghamdi, M.A., Shahzad, N. and Xu, H.K., The implicit midpoint rule for nonexpansive mappings, Fixed Point Theory Appl., 96 (2014), 9 pages.
  • Auzinger, W. and Frank, R., Asymptotic error expansions for stiff equations: an analysis for the implicit midpoint and trapezoidal rules in the strongly stiff case, Numer. Math., 56 (1989) 469-499.
  • Bader, G. and Deuflhard, P., A semi-implicit mid-point rule for stiff systems of ordinary differential equations, Numer. Math., 41 (1983) 373-398.
  • Bagherboum, M. and Razani, A. A., modified Mann iterative scheme for a sequence of nonexpansive mappings and a monotone mapping with applications, Bulletin of the Iranian Mathematical Society, 40 (2014), No. 4, 823--849
  • Bayreuth, A. The implicit midpoint rule applied to discontinuous differential equations, Computing, 49 (1992) 45-62.
  • Chang, S. S., Lee, J. and Chan, H. W., An new method for solving equilibrium problem, fixed point problem and variational inequality problem with application to optimization, Nonlinear Analysis, 70(2009)3307-3319.
  • Chen, R. and Song, Y., Convergence to common fixed point of nonexpansive semigroups, J. Comput. Appl. Math. 200, 566-575 (2007).
  • Crombez, G., A hicrarchical presentation of operators with fixed points on Hilbert spaces, Numer. Funct. Anal. Optim. 27(2006)259-277.
  • Deuflhard, P., Recent progress in extrapolation methods for ordinary differential equations, SIAM Rev., 27(4) (1985) 505-535.
  • Hofer, E., A partially implicit method for large stiff systems of ODEs with only few equations introducing small time-constants, SIAM J. Numer. Anal., 13 (1976) 645-663.
  • Homaeipour, S. and Razani, A., Convergence of an iterative method for relatively nonexpansive multi-valued mappings and equilibrium problems in Banach spaces, Optimization Letters, 8 (2014), no. 1, 211-225.
  • Kang, J., Su, Y. and Zhang, X., Genaral iterative algorithm for nonexpansive semigroups and variational inequalitis in Hilbert space, Journal of Inequalities and Applications ( 2010) Article ID.264052, 10 pages.
  • Lions, P.L., Approximation de points fixes de contractions, C.R. Acad. Sci., Ser. A-B, Paris, 284 (1977) 1357-1359.
  • Mahdioui, H. and Chadli, O., On a system of generalized mixed equilibrium problem involving variational-like inequalities in Banach spaces: existence and algorithmic aspects, Advances in Operations Research. 2012(2012)843-486.
  • Marino, G. and Xu, H.K., A general iterative method for nonexpansive mappings in Hilbert spaces, Math. Appl. 318(2006)43-52.
  • Moradi, R. and Razani, A., Nonlinear iterative algorithms for quasi contraction mapping in modular space, Georgian Mathematics Journal, 23 (2016), No. 1, 105--119.
  • Opial, Z., Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Am. Math. Soc. 73(4)(1967)595-597.
  • Plubtieng, S. and Punpaeng, R., Fixed point solutions of variational inequalities for nonexpansive semigroups in Hilbert spaces, Math. Comput. Model. 48(2008) 279-286.
  • Razani, A. and Bagherboum, M., Convergence and stability of Jungck-type iterative procedures in convex b-metric spaces, Fixed Point Theory and Applications, 2013:331 (2013),17 pages.
  • Razani, A. and Yazdi, M., A new iterative method for nonexpansive mappings in Hilbert Spaces, Journal of Nonlinear and Optimization: Theory and Applications, 3 (2012), No.1, 85--92.
  • Razani, A. and Yazdi, M., Viscosity approximation methods for a countable family of quasi-nonexpansive mappings, World Applied Sciences Journal, 17(12) (2012), 1618--1622.
  • Razani, A. and Yazdi, M., A new iterative method for generalized equilibrium and fixed point problems of nonexpansive mappings, Bull. Malays. Math. Sci. Soc. (2) 35(4) (2012), 1049--1061.
  • Razani, A. and Yazdi, M., A new iterative method for a family of nonexpansive mappings, Mathematical Reports, 16(66), 1 (2014), 7--23.
  • Rizvi, S. H., General Viscosity Implicit Midpoint Rule For Nonexpansive Mapping, 2016.
  • Schneider, C., Analysis of the linearly implicit mid-point rule for differential-algebra equations, Electron. Trans. Numer. Anal., 1 (1993) 1-10.
  • Shimizu, T. and Takahashi, W., Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl. 211(1997)71-83.
  • Somalia, S. and Davulcua, S., Implicit midpoint rule and extrapolation to singularly perturbed boundary value problems, Int. J. Comput. Math., 75(1) (2000) 117-127.
  • Somalia, S., Implicit midpoint rule to the nonlinear degenerate boundary value problems, Int. J. Comput. Math., 79(3) (2002) 327-332.
  • Xu, H. K., Viscosity approximation method for nonexpansive semigroups, J. Math. Anal. Appl. 298(2004)279-291.
  • Xu, H.K., Alghamdi, M.A. and Shahzad, N., The viscosity technique for the implicit mid point rule of nonexpansive mappings in Hilbert spaces, Fixed point Theory Appl., 41 (2015), 12 pages.

A generalized nonlinear iterative algorithm for the explicit midpoint rule of nonexpansive semigroup

Year 2020, , 613 - 628, 30.06.2020
https://doi.org/10.31801/cfsuasmas.484452

Abstract

In this paper, we introduce a new iterative midpoint rule for finding a solution of xed point problem for a nonexpansive semigroup in real Hilbert spaces. We establish a strong convergence theorem for the sequences generated by our proposed iterative scheme. Furthermore, we provide application to Fredholm integral equations. A
numerical example is presented to illustrate the convergence result. Our results improve and extend the corresponding results in the literature.

References

  • Alghamdi, M.A., Shahzad, N. and Xu, H.K., The implicit midpoint rule for nonexpansive mappings, Fixed Point Theory Appl., 96 (2014), 9 pages.
  • Auzinger, W. and Frank, R., Asymptotic error expansions for stiff equations: an analysis for the implicit midpoint and trapezoidal rules in the strongly stiff case, Numer. Math., 56 (1989) 469-499.
  • Bader, G. and Deuflhard, P., A semi-implicit mid-point rule for stiff systems of ordinary differential equations, Numer. Math., 41 (1983) 373-398.
  • Bagherboum, M. and Razani, A. A., modified Mann iterative scheme for a sequence of nonexpansive mappings and a monotone mapping with applications, Bulletin of the Iranian Mathematical Society, 40 (2014), No. 4, 823--849
  • Bayreuth, A. The implicit midpoint rule applied to discontinuous differential equations, Computing, 49 (1992) 45-62.
  • Chang, S. S., Lee, J. and Chan, H. W., An new method for solving equilibrium problem, fixed point problem and variational inequality problem with application to optimization, Nonlinear Analysis, 70(2009)3307-3319.
  • Chen, R. and Song, Y., Convergence to common fixed point of nonexpansive semigroups, J. Comput. Appl. Math. 200, 566-575 (2007).
  • Crombez, G., A hicrarchical presentation of operators with fixed points on Hilbert spaces, Numer. Funct. Anal. Optim. 27(2006)259-277.
  • Deuflhard, P., Recent progress in extrapolation methods for ordinary differential equations, SIAM Rev., 27(4) (1985) 505-535.
  • Hofer, E., A partially implicit method for large stiff systems of ODEs with only few equations introducing small time-constants, SIAM J. Numer. Anal., 13 (1976) 645-663.
  • Homaeipour, S. and Razani, A., Convergence of an iterative method for relatively nonexpansive multi-valued mappings and equilibrium problems in Banach spaces, Optimization Letters, 8 (2014), no. 1, 211-225.
  • Kang, J., Su, Y. and Zhang, X., Genaral iterative algorithm for nonexpansive semigroups and variational inequalitis in Hilbert space, Journal of Inequalities and Applications ( 2010) Article ID.264052, 10 pages.
  • Lions, P.L., Approximation de points fixes de contractions, C.R. Acad. Sci., Ser. A-B, Paris, 284 (1977) 1357-1359.
  • Mahdioui, H. and Chadli, O., On a system of generalized mixed equilibrium problem involving variational-like inequalities in Banach spaces: existence and algorithmic aspects, Advances in Operations Research. 2012(2012)843-486.
  • Marino, G. and Xu, H.K., A general iterative method for nonexpansive mappings in Hilbert spaces, Math. Appl. 318(2006)43-52.
  • Moradi, R. and Razani, A., Nonlinear iterative algorithms for quasi contraction mapping in modular space, Georgian Mathematics Journal, 23 (2016), No. 1, 105--119.
  • Opial, Z., Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Am. Math. Soc. 73(4)(1967)595-597.
  • Plubtieng, S. and Punpaeng, R., Fixed point solutions of variational inequalities for nonexpansive semigroups in Hilbert spaces, Math. Comput. Model. 48(2008) 279-286.
  • Razani, A. and Bagherboum, M., Convergence and stability of Jungck-type iterative procedures in convex b-metric spaces, Fixed Point Theory and Applications, 2013:331 (2013),17 pages.
  • Razani, A. and Yazdi, M., A new iterative method for nonexpansive mappings in Hilbert Spaces, Journal of Nonlinear and Optimization: Theory and Applications, 3 (2012), No.1, 85--92.
  • Razani, A. and Yazdi, M., Viscosity approximation methods for a countable family of quasi-nonexpansive mappings, World Applied Sciences Journal, 17(12) (2012), 1618--1622.
  • Razani, A. and Yazdi, M., A new iterative method for generalized equilibrium and fixed point problems of nonexpansive mappings, Bull. Malays. Math. Sci. Soc. (2) 35(4) (2012), 1049--1061.
  • Razani, A. and Yazdi, M., A new iterative method for a family of nonexpansive mappings, Mathematical Reports, 16(66), 1 (2014), 7--23.
  • Rizvi, S. H., General Viscosity Implicit Midpoint Rule For Nonexpansive Mapping, 2016.
  • Schneider, C., Analysis of the linearly implicit mid-point rule for differential-algebra equations, Electron. Trans. Numer. Anal., 1 (1993) 1-10.
  • Shimizu, T. and Takahashi, W., Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl. 211(1997)71-83.
  • Somalia, S. and Davulcua, S., Implicit midpoint rule and extrapolation to singularly perturbed boundary value problems, Int. J. Comput. Math., 75(1) (2000) 117-127.
  • Somalia, S., Implicit midpoint rule to the nonlinear degenerate boundary value problems, Int. J. Comput. Math., 79(3) (2002) 327-332.
  • Xu, H. K., Viscosity approximation method for nonexpansive semigroups, J. Math. Anal. Appl. 298(2004)279-291.
  • Xu, H.K., Alghamdi, M.A. and Shahzad, N., The viscosity technique for the implicit mid point rule of nonexpansive mappings in Hilbert spaces, Fixed point Theory Appl., 41 (2015), 12 pages.
There are 30 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Hamid Reza Sahebi 0000-0002-1944-5670

Mahdi Azhını This is me 0000-0001-6390-0266

Masume Cheraghi This is me 0000-0003-4878-9250

Publication Date June 30, 2020
Submission Date November 16, 2018
Acceptance Date December 13, 2019
Published in Issue Year 2020

Cite

APA Sahebi, H. R., Azhını, M., & Cheraghi, M. (2020). A generalized nonlinear iterative algorithm for the explicit midpoint rule of nonexpansive semigroup. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1), 613-628. https://doi.org/10.31801/cfsuasmas.484452
AMA Sahebi HR, Azhını M, Cheraghi M. A generalized nonlinear iterative algorithm for the explicit midpoint rule of nonexpansive semigroup. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2020;69(1):613-628. doi:10.31801/cfsuasmas.484452
Chicago Sahebi, Hamid Reza, Mahdi Azhını, and Masume Cheraghi. “A Generalized Nonlinear Iterative Algorithm for the Explicit Midpoint Rule of Nonexpansive Semigroup”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 1 (June 2020): 613-28. https://doi.org/10.31801/cfsuasmas.484452.
EndNote Sahebi HR, Azhını M, Cheraghi M (June 1, 2020) A generalized nonlinear iterative algorithm for the explicit midpoint rule of nonexpansive semigroup. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 1 613–628.
IEEE H. R. Sahebi, M. Azhını, and M. Cheraghi, “A generalized nonlinear iterative algorithm for the explicit midpoint rule of nonexpansive semigroup”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 1, pp. 613–628, 2020, doi: 10.31801/cfsuasmas.484452.
ISNAD Sahebi, Hamid Reza et al. “A Generalized Nonlinear Iterative Algorithm for the Explicit Midpoint Rule of Nonexpansive Semigroup”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/1 (June 2020), 613-628. https://doi.org/10.31801/cfsuasmas.484452.
JAMA Sahebi HR, Azhını M, Cheraghi M. A generalized nonlinear iterative algorithm for the explicit midpoint rule of nonexpansive semigroup. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:613–628.
MLA Sahebi, Hamid Reza et al. “A Generalized Nonlinear Iterative Algorithm for the Explicit Midpoint Rule of Nonexpansive Semigroup”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 1, 2020, pp. 613-28, doi:10.31801/cfsuasmas.484452.
Vancouver Sahebi HR, Azhını M, Cheraghi M. A generalized nonlinear iterative algorithm for the explicit midpoint rule of nonexpansive semigroup. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(1):613-28.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.