Abbassi, M.T.K. and Sarih, M., On natural metrics on tangent bundles of Riemannian manifolds, Arch. Math., 41 (2005), 71-92.
Anastasiei, M., Locally conformal Kaehler structures on tangent bundle of a space form, Libertas Math., 19 (1999), 71-76.
Boeckx, E. and Vanhecke, L., Harmonic and minimal vector fields on unit tangent bundles, Differential Geometry and Applications, Volume 13, Issue 1, July 2000, Pages 77-93.
Cheeger, J. and Gromoll, D., On the structure of complete manifolds of nonnegative curvature, Ann. of Math., (2) 96 (1972), 413-443.
Cengiz, N., Salimov, A.A., Diagonal lift in the tensor bundle and its applications. Appl. Math. Comput. 142, no.2-3 (2003), 309-319.
Cherif, A.M. and Djaa, M., On the Biharmonic maps with potential, Arab Journal Mathemaical Sciences, AJMS Elsevier, 24(1) (2018), 1-8.
Djaa, M. and Cherif, A. M., On Generalized f-biharmonic Maps and Stress f-bienergy Tensor, Journal of Geometry and Symmetry in Physics JGSP, 29 (2013), pp. 65-81.
Djaa, M., Mohamed Cherif, A., Zegga, K. And Ouakkas, S., On the Generalized of harmonic and Bi-harmonic Maps, International electronic journal of geometry, 5 no. 1 (2012), 90-100.
Djaa, M. and Gancarzewicz, J., The geometry of tangent bundles of order r, Boletin Academia , Galega de Ciencias, Espagne, 4 (1985), 147-165
Djaa, N.E.H., Ouakkas, S. and Djaa, M., Harmonic sections on the tangent bundle of order two, Annales Mathematicae et Informaticae, 38 (2011), 15-25.
Djaa, N.E.H., Boulal, A. and Zagane, A., Generalized warped product manifolds and Biharmonic maps, Acta Math. Univ. Comenianae, Vol. LXXXI, 2 (2012), 283-298.
Dombrowski, P., On the geometry of tangent bundle, J. Reine Angew .Math., 210 (1962), 73-88.
Ells, J. and Sampson, J.H., Harmonic mappings of Riemannian manifolds. Amer.J. Maths., 86 (1964).
Ells, J. and Lemaire, L., Another report on harmonic maps, Bull. London Math. Soc., 20 (1988), 385-524.
Gezer, A. and Altunbas, M., Some notes concerning Riemannian metrics of Cheeger-Gromoll type, J. Math. Anal. Appl., 396 (2012) 119-132.
Gudmunsson, S. and Kappos, E., On the Geometry of Tangent Bundles, Expo.Math., 20 (2002),1-41.
Ishihara, T., Harmonic sections of tangent bundles, J. Math. Tokushima Univ., 13 1979), 23-27.
Latti, F., Djaa, M. and Zagane, A., Mus-Sasaki Metric and Harmonicity, Mathematical Sciences and Applications E-Notes, 6 (1) (2018), 29-36.
Munteanu, M., Some Aspects on the Geometry of the Tangent Bundles and Tangent Sphere Bundles of Riemannian Manifold, Mediterr. J. Math., 5 (2008), 43-59.
Opriou, V., On Harmonic Maps Between tangent bundles, Rend. Sem.Mat., Vol 47, 1(1989).
Salimov, A. A., Gezer, A. and Akbulut, K., Geodesics of Sasakian metrics on tensor bundles, Mediterr. J. Math., 6, no.2 (2009), 135-147.
Salimov, A. A. and Kazimova, S., Geodesics of the Cheeger-Gromoll Metric, Turk J Math., 33 (2009), 99 - 105.
Sasaki, S., On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J., 10 (1958), 338-354.
Sekizawa, M., Curvatures of Tangent Bundles with Cheeger-Gromoll Metric, Tokyo J. Math., 14, No. 2 (1991), 407-417.
Yano, K. and Ishihara, S., Tangent and Cotangent Bundles, Marcel Dekker INC. New York, 1-171, 1973.
Zagane, A. and Djaa, M., On Geodesics of Warped Sasaki Metric, Mathematical Sciences and Applications E-Notes 5 (1) (2017), 85-92.
On generalized Cheeger-Gromoll metric and harmonicity
In this paper, we introduce the Generalized Cheeger-Gromoll metric on the tangent bundle TM, as a natural metric on TM. We establish a necessary and sufficient conditions under which a vector field is harmonic with respect to the Generalized Cheeger-Gromoll metric. We also construct some examples of harmonic vector fields.
Abbassi, M.T.K. and Sarih, M., On natural metrics on tangent bundles of Riemannian manifolds, Arch. Math., 41 (2005), 71-92.
Anastasiei, M., Locally conformal Kaehler structures on tangent bundle of a space form, Libertas Math., 19 (1999), 71-76.
Boeckx, E. and Vanhecke, L., Harmonic and minimal vector fields on unit tangent bundles, Differential Geometry and Applications, Volume 13, Issue 1, July 2000, Pages 77-93.
Cheeger, J. and Gromoll, D., On the structure of complete manifolds of nonnegative curvature, Ann. of Math., (2) 96 (1972), 413-443.
Cengiz, N., Salimov, A.A., Diagonal lift in the tensor bundle and its applications. Appl. Math. Comput. 142, no.2-3 (2003), 309-319.
Cherif, A.M. and Djaa, M., On the Biharmonic maps with potential, Arab Journal Mathemaical Sciences, AJMS Elsevier, 24(1) (2018), 1-8.
Djaa, M. and Cherif, A. M., On Generalized f-biharmonic Maps and Stress f-bienergy Tensor, Journal of Geometry and Symmetry in Physics JGSP, 29 (2013), pp. 65-81.
Djaa, M., Mohamed Cherif, A., Zegga, K. And Ouakkas, S., On the Generalized of harmonic and Bi-harmonic Maps, International electronic journal of geometry, 5 no. 1 (2012), 90-100.
Djaa, M. and Gancarzewicz, J., The geometry of tangent bundles of order r, Boletin Academia , Galega de Ciencias, Espagne, 4 (1985), 147-165
Djaa, N.E.H., Ouakkas, S. and Djaa, M., Harmonic sections on the tangent bundle of order two, Annales Mathematicae et Informaticae, 38 (2011), 15-25.
Djaa, N.E.H., Boulal, A. and Zagane, A., Generalized warped product manifolds and Biharmonic maps, Acta Math. Univ. Comenianae, Vol. LXXXI, 2 (2012), 283-298.
Dombrowski, P., On the geometry of tangent bundle, J. Reine Angew .Math., 210 (1962), 73-88.
Ells, J. and Sampson, J.H., Harmonic mappings of Riemannian manifolds. Amer.J. Maths., 86 (1964).
Ells, J. and Lemaire, L., Another report on harmonic maps, Bull. London Math. Soc., 20 (1988), 385-524.
Gezer, A. and Altunbas, M., Some notes concerning Riemannian metrics of Cheeger-Gromoll type, J. Math. Anal. Appl., 396 (2012) 119-132.
Gudmunsson, S. and Kappos, E., On the Geometry of Tangent Bundles, Expo.Math., 20 (2002),1-41.
Ishihara, T., Harmonic sections of tangent bundles, J. Math. Tokushima Univ., 13 1979), 23-27.
Latti, F., Djaa, M. and Zagane, A., Mus-Sasaki Metric and Harmonicity, Mathematical Sciences and Applications E-Notes, 6 (1) (2018), 29-36.
Munteanu, M., Some Aspects on the Geometry of the Tangent Bundles and Tangent Sphere Bundles of Riemannian Manifold, Mediterr. J. Math., 5 (2008), 43-59.
Opriou, V., On Harmonic Maps Between tangent bundles, Rend. Sem.Mat., Vol 47, 1(1989).
Salimov, A. A., Gezer, A. and Akbulut, K., Geodesics of Sasakian metrics on tensor bundles, Mediterr. J. Math., 6, no.2 (2009), 135-147.
Salimov, A. A. and Kazimova, S., Geodesics of the Cheeger-Gromoll Metric, Turk J Math., 33 (2009), 99 - 105.
Sasaki, S., On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J., 10 (1958), 338-354.
Sekizawa, M., Curvatures of Tangent Bundles with Cheeger-Gromoll Metric, Tokyo J. Math., 14, No. 2 (1991), 407-417.
Yano, K. and Ishihara, S., Tangent and Cotangent Bundles, Marcel Dekker INC. New York, 1-171, 1973.
Zagane, A. and Djaa, M., On Geodesics of Warped Sasaki Metric, Mathematical Sciences and Applications E-Notes 5 (1) (2017), 85-92.
Zagane, A., Djaa, M., & Kada Ben Otmane, R. (2020). On generalized Cheeger-Gromoll metric and harmonicity. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1), 629-645. https://doi.org/10.31801/cfsuasmas.487296
AMA
Zagane A, Djaa M, Kada Ben Otmane R. On generalized Cheeger-Gromoll metric and harmonicity. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2020;69(1):629-645. doi:10.31801/cfsuasmas.487296
Chicago
Zagane, Abderrahim, Mustapha Djaa, and Reda Kada Ben Otmane. “On Generalized Cheeger-Gromoll Metric and Harmonicity”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 1 (June 2020): 629-45. https://doi.org/10.31801/cfsuasmas.487296.
EndNote
Zagane A, Djaa M, Kada Ben Otmane R (June 1, 2020) On generalized Cheeger-Gromoll metric and harmonicity. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 1 629–645.
IEEE
A. Zagane, M. Djaa, and R. Kada Ben Otmane, “On generalized Cheeger-Gromoll metric and harmonicity”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 1, pp. 629–645, 2020, doi: 10.31801/cfsuasmas.487296.
ISNAD
Zagane, Abderrahim et al. “On Generalized Cheeger-Gromoll Metric and Harmonicity”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/1 (June 2020), 629-645. https://doi.org/10.31801/cfsuasmas.487296.
JAMA
Zagane A, Djaa M, Kada Ben Otmane R. On generalized Cheeger-Gromoll metric and harmonicity. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:629–645.
MLA
Zagane, Abderrahim et al. “On Generalized Cheeger-Gromoll Metric and Harmonicity”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 1, 2020, pp. 629-45, doi:10.31801/cfsuasmas.487296.
Vancouver
Zagane A, Djaa M, Kada Ben Otmane R. On generalized Cheeger-Gromoll metric and harmonicity. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(1):629-45.