Research Article
BibTex RIS Cite
Year 2020, , 668 - 683, 30.06.2020
https://doi.org/10.31801/cfsuasmas.549184

Abstract

References

  • Agarwal, R. P., Grace, S. R. and O'Regan, D., Oscillation criteria for certain nth order differential equations with deviating arguments, J. Math. Appl. Anal.,262 (2001), 601--622.
  • Agarwal, R. P., Grace, S. R. and O'Regan, D., The oscillation of certain higher-order functional dfferential equations, Math. Comput. Model., 37 (2003), 705--728.
  • Agarwal, R. P., O'Regan, D. and Saker, S. H., Philos-type oscillation criteria for second order half linear dynamic equations, Rocky Mountain J. Math., 37 (2007), 1085--1104.
  • Agarwal, R. P., Bohner, M., Li, T. and Zhang, C., A Philos-type theorem for third-order nonlinear retarded dynamic equations, Appl. Math. Comput., 249 (2014),527--531.
  • Agarwal, R. P., Bohner, M., Li, T. and Zhang, C., Oscillation criteria for second-order dynamic equations on time scales, Appl. Math. Lett., 31 (2014), 34--40.
  • Agwa, H. A., Khodier, A. M. M. and Arafa, H. M., Oscillation of second-order nonlinear neutral dynamic equations with mixed arguments on time scales, Journal of Basic and Applied Research International, 17 (2016), 49--66.
  • Baculikova, B. and Dzurina, J., Oscillation theorems for second-order nonlinear neutral differential equations, Comput. Math. Appl., 62(12) (2011), 4472--4478.
  • Bohner, M. and Peterson, A., Dynamic Equations on Time Scales. An Introduction with Applications, Birkhäuser, Boston, 2001.
  • Bohner, M. and Peterson, A., Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
  • Candan, T. and Dahiya, R. S., On the oscillation of certain mixed neutral equations, Appl. Math. Lett., 21 (2008), 222--226.
  • Chatzarakis, G. E. and Miliaras, G. N., Covergence of the solutions for a neutral difference equation with negative coefficients, Tatra Mt. Math. Publ., 54 (2013),31--43.
  • Grace, S. R., On the oscillations of mixed neutral equations, J. Math. Anal. Appl., 194 (1995), 377--388.
  • Grace, S. R., Dzurina, J., Jadlovska, I. and Li, T., An improved approach for studying oscillation of second-order neutral delay differential equations,J. Inequal. Appl., 2018:193 (2018), 13 pages.
  • Graef, J. R., Tunc, E. and Grace, S. R., Oscillatory and asymptotic behavior of a third-order nonlinear neutral differential equation, Opuscula Math., 37(6) (2017), 839--852.
  • Hale, J., Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.
  • Han, Z., Li, T., Zhang, C. and Sun, Y., Oscillation criteria for certain second-order nonlinear neutral differential equations of mixed type, Abstr. Appl. Anal., 2011 (2011), Article ID:387483, 1--9.
  • Hardy, G. H., Littlewood, J. E. and Polya, G., Inequalities, Reprint of the 1952 edition, Cambridge University Press, Cambridge, 1988.
  • Hilger, S., Analysis on measure chains A unified approach to continuous and discrete calculus, Results Math., 18 (1990), 18--56.
  • Ji, T., Tang, S. and Thandapani, E., Oscillation of second-order neutral dynamic equations with mixed arguments, Appl. Math. Inf. Sci., 8 (2014), 2225--2228.
  • Karpuz, B., Manojlovic, J. V., Ocalan, O. and Shoukaku, Y., Oscillation criteria for a class of second-order neutral delay differential equations, Appl. Math. Comput., 210 (2009), 303--312.
  • Karpuz, B., Ocalan, O. and Y{\i}ld{\i}z, M. K., Oscillation of a class of difference equations of second order, Math. Comput. Model., 49 (2009), 912--917.
  • Kolmanovskii, V. and Myshkis, A., Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 1999.
  • Li, T., Comparison theorems for second-order neutral differential equations of mixed type, Electron. J. Differ. Eq., 2010 (2010), No. 167, 1--7.
  • Li, T., Agarwal, R. P. and Bohner, M., Some oscillation results for second-order neutral dynamic equations, Hacet. J. Math. Stat., 41 (2012), 715--721.
  • MacDonald, N., Biological Delay Systems: Linear Stability Theory, Cambridge University Press, Cambridge, 1989.
  • Ozdemir, O. and Tunc, E., Asymptotic behavior and oscillation of solutions of third order neutral dynamic equations with distributed deviating arguments, Bull. Math. Anal. Appl., 10(2) (2018), 31--52.
  • Philos, Ch. G., Oscillation theorems for linear differential equations of second order, Arch. Math., 53 (1989), 482--492.
  • Qi, Y. and Yu, J., Oscillation of second order nonlinear mixed neutral differential equations with distributed deviating arguments, Bull. Malays. Math. Sci. Soc., 38 (2015), 543--560.
  • Saker, S. H., Oscillation of second-order nonlinear neutral delay dynamic equations on time scales, J. Comput. Appl. Math., 187 (2006), 123--141.
  • Thandapani, E., Padmavathi, S. and Pinelas, S., Oscillation criteria for even-order nonlinear neutral differential equations of mixed type, Bull. Math. Anal. Appl., 6(1)(2014), 9--22.
  • Tunc, E. and Graef, J. R., Oscillation results for second order neutral dynamic equatitons with distributed deviating arguments, Dynam. Syst. Appl., 23(2-3) (2014), 289--303.
  • Tunc, E. and Grace, S. R., On oscillatory and asymptotic behavior of a second order nonlinear damped neutral differential equation, International Journal of Differential Equations, 2016 (2016), Article ID: 3746368, 8 pages.
  • Tunc, E. and Ozdemir, O., On the asymptotic and oscillatory behavior of solutions of third-order neutral dynamic equations on time scales, Adv. Difference Equ., 2017:127 (2017), 13 pages.
  • Tunc, E. and Liu, H., Oscillatory behavior for second-order damped differential equation with nonlinearities including Riemann--Stieltjes integrals, Electron. J. Differ. Equ., 2018(54) (2018), 1--12.
  • Tunc, E. and Ozdemir, O., On the oscillation of second-order half-linear functional differential equations with mixed neutral term, J. Taibah Univ. Sci., 13(1) (2019), 481--489.
  • Yan, J., Oscillations of second order neutral functional differential equations, Appl. Math. Comput., 83 (1997), 27--41.
  • Zhang, C., Baculikova, B., Dzurina, J. and Li, T., Oscillation results for second-order mixed neutral differential equations with distributed deviating arguments, Math. Slovaca, 66(3) (2016), 615--626.

Oscillation results for second order half-linear functional dynamic equations with unbounded neutral coefficients on time scales

Year 2020, , 668 - 683, 30.06.2020
https://doi.org/10.31801/cfsuasmas.549184

Abstract

This study aims to present some new sufficient conditions for the oscillatory behavior of solutions to a class of second order half-linear functional dynamic equations with mixed neutral term i.e., the neutral term contains both retarded and advanced arguments. The results obtained are applicable in the case where the studied equation has unbounded neutral coefficients and they are new even for the linear case. Illustrative examples are also provided.

References

  • Agarwal, R. P., Grace, S. R. and O'Regan, D., Oscillation criteria for certain nth order differential equations with deviating arguments, J. Math. Appl. Anal.,262 (2001), 601--622.
  • Agarwal, R. P., Grace, S. R. and O'Regan, D., The oscillation of certain higher-order functional dfferential equations, Math. Comput. Model., 37 (2003), 705--728.
  • Agarwal, R. P., O'Regan, D. and Saker, S. H., Philos-type oscillation criteria for second order half linear dynamic equations, Rocky Mountain J. Math., 37 (2007), 1085--1104.
  • Agarwal, R. P., Bohner, M., Li, T. and Zhang, C., A Philos-type theorem for third-order nonlinear retarded dynamic equations, Appl. Math. Comput., 249 (2014),527--531.
  • Agarwal, R. P., Bohner, M., Li, T. and Zhang, C., Oscillation criteria for second-order dynamic equations on time scales, Appl. Math. Lett., 31 (2014), 34--40.
  • Agwa, H. A., Khodier, A. M. M. and Arafa, H. M., Oscillation of second-order nonlinear neutral dynamic equations with mixed arguments on time scales, Journal of Basic and Applied Research International, 17 (2016), 49--66.
  • Baculikova, B. and Dzurina, J., Oscillation theorems for second-order nonlinear neutral differential equations, Comput. Math. Appl., 62(12) (2011), 4472--4478.
  • Bohner, M. and Peterson, A., Dynamic Equations on Time Scales. An Introduction with Applications, Birkhäuser, Boston, 2001.
  • Bohner, M. and Peterson, A., Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
  • Candan, T. and Dahiya, R. S., On the oscillation of certain mixed neutral equations, Appl. Math. Lett., 21 (2008), 222--226.
  • Chatzarakis, G. E. and Miliaras, G. N., Covergence of the solutions for a neutral difference equation with negative coefficients, Tatra Mt. Math. Publ., 54 (2013),31--43.
  • Grace, S. R., On the oscillations of mixed neutral equations, J. Math. Anal. Appl., 194 (1995), 377--388.
  • Grace, S. R., Dzurina, J., Jadlovska, I. and Li, T., An improved approach for studying oscillation of second-order neutral delay differential equations,J. Inequal. Appl., 2018:193 (2018), 13 pages.
  • Graef, J. R., Tunc, E. and Grace, S. R., Oscillatory and asymptotic behavior of a third-order nonlinear neutral differential equation, Opuscula Math., 37(6) (2017), 839--852.
  • Hale, J., Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.
  • Han, Z., Li, T., Zhang, C. and Sun, Y., Oscillation criteria for certain second-order nonlinear neutral differential equations of mixed type, Abstr. Appl. Anal., 2011 (2011), Article ID:387483, 1--9.
  • Hardy, G. H., Littlewood, J. E. and Polya, G., Inequalities, Reprint of the 1952 edition, Cambridge University Press, Cambridge, 1988.
  • Hilger, S., Analysis on measure chains A unified approach to continuous and discrete calculus, Results Math., 18 (1990), 18--56.
  • Ji, T., Tang, S. and Thandapani, E., Oscillation of second-order neutral dynamic equations with mixed arguments, Appl. Math. Inf. Sci., 8 (2014), 2225--2228.
  • Karpuz, B., Manojlovic, J. V., Ocalan, O. and Shoukaku, Y., Oscillation criteria for a class of second-order neutral delay differential equations, Appl. Math. Comput., 210 (2009), 303--312.
  • Karpuz, B., Ocalan, O. and Y{\i}ld{\i}z, M. K., Oscillation of a class of difference equations of second order, Math. Comput. Model., 49 (2009), 912--917.
  • Kolmanovskii, V. and Myshkis, A., Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 1999.
  • Li, T., Comparison theorems for second-order neutral differential equations of mixed type, Electron. J. Differ. Eq., 2010 (2010), No. 167, 1--7.
  • Li, T., Agarwal, R. P. and Bohner, M., Some oscillation results for second-order neutral dynamic equations, Hacet. J. Math. Stat., 41 (2012), 715--721.
  • MacDonald, N., Biological Delay Systems: Linear Stability Theory, Cambridge University Press, Cambridge, 1989.
  • Ozdemir, O. and Tunc, E., Asymptotic behavior and oscillation of solutions of third order neutral dynamic equations with distributed deviating arguments, Bull. Math. Anal. Appl., 10(2) (2018), 31--52.
  • Philos, Ch. G., Oscillation theorems for linear differential equations of second order, Arch. Math., 53 (1989), 482--492.
  • Qi, Y. and Yu, J., Oscillation of second order nonlinear mixed neutral differential equations with distributed deviating arguments, Bull. Malays. Math. Sci. Soc., 38 (2015), 543--560.
  • Saker, S. H., Oscillation of second-order nonlinear neutral delay dynamic equations on time scales, J. Comput. Appl. Math., 187 (2006), 123--141.
  • Thandapani, E., Padmavathi, S. and Pinelas, S., Oscillation criteria for even-order nonlinear neutral differential equations of mixed type, Bull. Math. Anal. Appl., 6(1)(2014), 9--22.
  • Tunc, E. and Graef, J. R., Oscillation results for second order neutral dynamic equatitons with distributed deviating arguments, Dynam. Syst. Appl., 23(2-3) (2014), 289--303.
  • Tunc, E. and Grace, S. R., On oscillatory and asymptotic behavior of a second order nonlinear damped neutral differential equation, International Journal of Differential Equations, 2016 (2016), Article ID: 3746368, 8 pages.
  • Tunc, E. and Ozdemir, O., On the asymptotic and oscillatory behavior of solutions of third-order neutral dynamic equations on time scales, Adv. Difference Equ., 2017:127 (2017), 13 pages.
  • Tunc, E. and Liu, H., Oscillatory behavior for second-order damped differential equation with nonlinearities including Riemann--Stieltjes integrals, Electron. J. Differ. Equ., 2018(54) (2018), 1--12.
  • Tunc, E. and Ozdemir, O., On the oscillation of second-order half-linear functional differential equations with mixed neutral term, J. Taibah Univ. Sci., 13(1) (2019), 481--489.
  • Yan, J., Oscillations of second order neutral functional differential equations, Appl. Math. Comput., 83 (1997), 27--41.
  • Zhang, C., Baculikova, B., Dzurina, J. and Li, T., Oscillation results for second-order mixed neutral differential equations with distributed deviating arguments, Math. Slovaca, 66(3) (2016), 615--626.
There are 37 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Articles
Authors

Orhan Özdemir 0000-0003-1294-5346

Publication Date June 30, 2020
Submission Date April 4, 2019
Acceptance Date January 6, 2020
Published in Issue Year 2020

Cite

APA Özdemir, O. (2020). Oscillation results for second order half-linear functional dynamic equations with unbounded neutral coefficients on time scales. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1), 668-683. https://doi.org/10.31801/cfsuasmas.549184
AMA Özdemir O. Oscillation results for second order half-linear functional dynamic equations with unbounded neutral coefficients on time scales. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2020;69(1):668-683. doi:10.31801/cfsuasmas.549184
Chicago Özdemir, Orhan. “Oscillation Results for Second Order Half-Linear Functional Dynamic Equations With Unbounded Neutral Coefficients on Time Scales”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 1 (June 2020): 668-83. https://doi.org/10.31801/cfsuasmas.549184.
EndNote Özdemir O (June 1, 2020) Oscillation results for second order half-linear functional dynamic equations with unbounded neutral coefficients on time scales. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 1 668–683.
IEEE O. Özdemir, “Oscillation results for second order half-linear functional dynamic equations with unbounded neutral coefficients on time scales”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 1, pp. 668–683, 2020, doi: 10.31801/cfsuasmas.549184.
ISNAD Özdemir, Orhan. “Oscillation Results for Second Order Half-Linear Functional Dynamic Equations With Unbounded Neutral Coefficients on Time Scales”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/1 (June 2020), 668-683. https://doi.org/10.31801/cfsuasmas.549184.
JAMA Özdemir O. Oscillation results for second order half-linear functional dynamic equations with unbounded neutral coefficients on time scales. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:668–683.
MLA Özdemir, Orhan. “Oscillation Results for Second Order Half-Linear Functional Dynamic Equations With Unbounded Neutral Coefficients on Time Scales”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 1, 2020, pp. 668-83, doi:10.31801/cfsuasmas.549184.
Vancouver Özdemir O. Oscillation results for second order half-linear functional dynamic equations with unbounded neutral coefficients on time scales. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(1):668-83.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.