Research Article
BibTex RIS Cite
Year 2020, , 347 - 353, 30.06.2020
https://doi.org/10.31801/cfsuasmas.595570

Abstract

References

  • Aktaş, İ. On some properties of hyper-Bessel and related functions, TWMS J. App. Eng. Math., 9(1) (2019), 30--37.
  • Aktaş, İ. Baricz, Á. and Orhan, H., Bounds for the radii of starlikeness and convexity of some special functions, Turk. J. Math., 42(1) (2018), 211--226.
  • Aktaş, İ., Baricz, Á. and Singh, S. Geometric and monotonic properties of hyper-Bessel functions, Ramanujan J., doi.org/10.1007/s11139-018-0105-9
  • Baricz, Á. Geometric properties of generalized Bessel functions, Publ. Math. Debrecen, 73 (2008), 155--178.
  • Baricz, Á. and Pogány, T. K. Functional inequalities of modified Struve functions, P. Roy. Soc. Edinb. A, 144(5) (2014), 891--904.
  • Biernacki, M. and Krzyż, J. On the monotonity of certain functionals in the theory of analytic functions, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 9 (1955), 135--147.
  • Mohtasami Borzadaran, G. R. and Mohtasami Borzadaran, H. A. Log-Concavity property for some well-known distributions, Surv. Math. Appl., 6 (2011), 203--219.
  • Mondal, S.R. and Akel, M.S. Differential equation and inequalities of the generalized k-Bessel functions, J. Inequal. Appl., 2018:175 (2018).
  • Srivastava, H. M. and Bansal, D. Close-to-convexity of a certain family of q-Mittag-Leffler functions, J. Nonlinear Var. Anal., 1 (2017), 61--69.
  • Srivastava H.M., Murugusundaramoorthy G. and Janani T. Uniformly Starlike Functions and Uniformly Convex Functions Associated with the Struve Function, J. Appl. Computat. Math., 3: 180. doi: 10.4172/2168-9679.1000180
  • Srivastava, H. M., Murugusundaramoorthy, G. and Sivasubramanian, S. Hypergeometric functions in the parabolic starlike and uniformly convex domains, Integr. Transforms Spec. Funct., 18 (2007), 511--520.
  • Toklu, E. Radii of starlikeness and convexity of generalized Struve functions, Hacettepe J. Math. Stat., (Accepted).

On some properties of generalized Struve function

Year 2020, , 347 - 353, 30.06.2020
https://doi.org/10.31801/cfsuasmas.595570

Abstract

The main purpose of this investigation is to present some monotonic and log-concavity properties of the generalized Struve function. By using Hadamard product representation of the generalized Struve function, we investigate the sign of this function on some sets. Also, we determine an interval such that the generalized Struve function is decreasing in this interval. Moreover, we show that generalized Struve function is strictly logaritmically concave on some intervals. In addition, we prove that a function related to generalized Struve function is increasing function on R.

References

  • Aktaş, İ. On some properties of hyper-Bessel and related functions, TWMS J. App. Eng. Math., 9(1) (2019), 30--37.
  • Aktaş, İ. Baricz, Á. and Orhan, H., Bounds for the radii of starlikeness and convexity of some special functions, Turk. J. Math., 42(1) (2018), 211--226.
  • Aktaş, İ., Baricz, Á. and Singh, S. Geometric and monotonic properties of hyper-Bessel functions, Ramanujan J., doi.org/10.1007/s11139-018-0105-9
  • Baricz, Á. Geometric properties of generalized Bessel functions, Publ. Math. Debrecen, 73 (2008), 155--178.
  • Baricz, Á. and Pogány, T. K. Functional inequalities of modified Struve functions, P. Roy. Soc. Edinb. A, 144(5) (2014), 891--904.
  • Biernacki, M. and Krzyż, J. On the monotonity of certain functionals in the theory of analytic functions, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 9 (1955), 135--147.
  • Mohtasami Borzadaran, G. R. and Mohtasami Borzadaran, H. A. Log-Concavity property for some well-known distributions, Surv. Math. Appl., 6 (2011), 203--219.
  • Mondal, S.R. and Akel, M.S. Differential equation and inequalities of the generalized k-Bessel functions, J. Inequal. Appl., 2018:175 (2018).
  • Srivastava, H. M. and Bansal, D. Close-to-convexity of a certain family of q-Mittag-Leffler functions, J. Nonlinear Var. Anal., 1 (2017), 61--69.
  • Srivastava H.M., Murugusundaramoorthy G. and Janani T. Uniformly Starlike Functions and Uniformly Convex Functions Associated with the Struve Function, J. Appl. Computat. Math., 3: 180. doi: 10.4172/2168-9679.1000180
  • Srivastava, H. M., Murugusundaramoorthy, G. and Sivasubramanian, S. Hypergeometric functions in the parabolic starlike and uniformly convex domains, Integr. Transforms Spec. Funct., 18 (2007), 511--520.
  • Toklu, E. Radii of starlikeness and convexity of generalized Struve functions, Hacettepe J. Math. Stat., (Accepted).
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

İbrahim Aktaş 0000-0003-4570-4485

Halit Orhan

Dorina Raducanu 0000-0003-2348-1874

Publication Date June 30, 2020
Submission Date July 23, 2019
Acceptance Date November 1, 2019
Published in Issue Year 2020

Cite

APA Aktaş, İ., Orhan, H., & Raducanu, D. (2020). On some properties of generalized Struve function. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1), 347-353. https://doi.org/10.31801/cfsuasmas.595570
AMA Aktaş İ, Orhan H, Raducanu D. On some properties of generalized Struve function. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2020;69(1):347-353. doi:10.31801/cfsuasmas.595570
Chicago Aktaş, İbrahim, Halit Orhan, and Dorina Raducanu. “On Some Properties of Generalized Struve Function”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 1 (June 2020): 347-53. https://doi.org/10.31801/cfsuasmas.595570.
EndNote Aktaş İ, Orhan H, Raducanu D (June 1, 2020) On some properties of generalized Struve function. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 1 347–353.
IEEE İ. Aktaş, H. Orhan, and D. Raducanu, “On some properties of generalized Struve function”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 1, pp. 347–353, 2020, doi: 10.31801/cfsuasmas.595570.
ISNAD Aktaş, İbrahim et al. “On Some Properties of Generalized Struve Function”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/1 (June 2020), 347-353. https://doi.org/10.31801/cfsuasmas.595570.
JAMA Aktaş İ, Orhan H, Raducanu D. On some properties of generalized Struve function. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:347–353.
MLA Aktaş, İbrahim et al. “On Some Properties of Generalized Struve Function”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 1, 2020, pp. 347-53, doi:10.31801/cfsuasmas.595570.
Vancouver Aktaş İ, Orhan H, Raducanu D. On some properties of generalized Struve function. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(1):347-53.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.