BibTex RIS Cite

INVERSE SPECTRAL PROBLEMS FOR DISCONTINUOUS STURM-LIOUVILLE OPERATOR WITH EIGENPARAMETER DEPENDENT BOUNDARY CONDITIONS.

Year 2011, , 15 - 26, 01.02.2011
https://doi.org/10.1501/Commua1_0000000666

Abstract

In this study, Sturm—Liouville problem with discontinuities in the
case when an eigenparameter linearly appears not only in the differential equation but it also appears in both of the boundary conditions is investigated.

References

  • [1] B. M. Levitan, and I. S. Sargsyan, Sturm-Liouville and Dirac Operators [in Russian], Nauka, Moscow (1988).
  • [2] C. T. Fulton, Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proc. R. Soc. Edinburgh, A77 (1977), 293-308.
  • [3] C. T. Fulton, Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions, Proc. R. Soc. Edinburgh, A87 (1980), 1-34.
  • [4] E. M. Russakovskii, Operator treatment of boundary problems with spectral parameters entering via polynomials in the boundary conditions, Funct. Anal. Appl. 9 (1975) 358—359.
  • [5] N. J. Guliyev, Inverse eigenvalue problems for Sturm-Liouville equations with spectral parameter linearly contained in one of the boundary conditions, Inverse Problems, 21(2005), 1315-1330.
  • [6] G. Freiling, V. Yurko, Inverse Sturm—Liouville Problems and their Applications, Nova Science, New York, 2001.
  • [7] H. Schmid and C. Tretter, Singular Dirac Systems and Sturm—Liouville Problems Nonlinear in the Spectral Parameter, Journal of Differential Equations, Volume 181, Issue 2, 20 May 2002, Pages 511-542.
  • [8] H. Weyl, Über gewohnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen, Math. Ann. 68 (1910) 220—269.
Year 2011, , 15 - 26, 01.02.2011
https://doi.org/10.1501/Commua1_0000000666

Abstract

References

  • [1] B. M. Levitan, and I. S. Sargsyan, Sturm-Liouville and Dirac Operators [in Russian], Nauka, Moscow (1988).
  • [2] C. T. Fulton, Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proc. R. Soc. Edinburgh, A77 (1977), 293-308.
  • [3] C. T. Fulton, Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions, Proc. R. Soc. Edinburgh, A87 (1980), 1-34.
  • [4] E. M. Russakovskii, Operator treatment of boundary problems with spectral parameters entering via polynomials in the boundary conditions, Funct. Anal. Appl. 9 (1975) 358—359.
  • [5] N. J. Guliyev, Inverse eigenvalue problems for Sturm-Liouville equations with spectral parameter linearly contained in one of the boundary conditions, Inverse Problems, 21(2005), 1315-1330.
  • [6] G. Freiling, V. Yurko, Inverse Sturm—Liouville Problems and their Applications, Nova Science, New York, 2001.
  • [7] H. Schmid and C. Tretter, Singular Dirac Systems and Sturm—Liouville Problems Nonlinear in the Spectral Parameter, Journal of Differential Equations, Volume 181, Issue 2, 20 May 2002, Pages 511-542.
  • [8] H. Weyl, Über gewohnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen, Math. Ann. 68 (1910) 220—269.
There are 8 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Baki Keskın This is me

Sinan Ozkan A. This is me

Numan Yalçın

Publication Date February 1, 2011
Published in Issue Year 2011

Cite

APA Keskın, B., Ozkan A., S., & Yalçın, N. (2011). INVERSE SPECTRAL PROBLEMS FOR DISCONTINUOUS STURM-LIOUVILLE OPERATOR WITH EIGENPARAMETER DEPENDENT BOUNDARY CONDITIONS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 60(1), 15-26. https://doi.org/10.1501/Commua1_0000000666
AMA Keskın B, Ozkan A. S, Yalçın N. INVERSE SPECTRAL PROBLEMS FOR DISCONTINUOUS STURM-LIOUVILLE OPERATOR WITH EIGENPARAMETER DEPENDENT BOUNDARY CONDITIONS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2011;60(1):15-26. doi:10.1501/Commua1_0000000666
Chicago Keskın, Baki, Sinan Ozkan A., and Numan Yalçın. “INVERSE SPECTRAL PROBLEMS FOR DISCONTINUOUS STURM-LIOUVILLE OPERATOR WITH EIGENPARAMETER DEPENDENT BOUNDARY CONDITIONS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 60, no. 1 (February 2011): 15-26. https://doi.org/10.1501/Commua1_0000000666.
EndNote Keskın B, Ozkan A. S, Yalçın N (February 1, 2011) INVERSE SPECTRAL PROBLEMS FOR DISCONTINUOUS STURM-LIOUVILLE OPERATOR WITH EIGENPARAMETER DEPENDENT BOUNDARY CONDITIONS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 60 1 15–26.
IEEE B. Keskın, S. Ozkan A., and N. Yalçın, “INVERSE SPECTRAL PROBLEMS FOR DISCONTINUOUS STURM-LIOUVILLE OPERATOR WITH EIGENPARAMETER DEPENDENT BOUNDARY CONDITIONS”., Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 60, no. 1, pp. 15–26, 2011, doi: 10.1501/Commua1_0000000666.
ISNAD Keskın, Baki et al. “INVERSE SPECTRAL PROBLEMS FOR DISCONTINUOUS STURM-LIOUVILLE OPERATOR WITH EIGENPARAMETER DEPENDENT BOUNDARY CONDITIONS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 60/1 (February 2011), 15-26. https://doi.org/10.1501/Commua1_0000000666.
JAMA Keskın B, Ozkan A. S, Yalçın N. INVERSE SPECTRAL PROBLEMS FOR DISCONTINUOUS STURM-LIOUVILLE OPERATOR WITH EIGENPARAMETER DEPENDENT BOUNDARY CONDITIONS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2011;60:15–26.
MLA Keskın, Baki et al. “INVERSE SPECTRAL PROBLEMS FOR DISCONTINUOUS STURM-LIOUVILLE OPERATOR WITH EIGENPARAMETER DEPENDENT BOUNDARY CONDITIONS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 60, no. 1, 2011, pp. 15-26, doi:10.1501/Commua1_0000000666.
Vancouver Keskın B, Ozkan A. S, Yalçın N. INVERSE SPECTRAL PROBLEMS FOR DISCONTINUOUS STURM-LIOUVILLE OPERATOR WITH EIGENPARAMETER DEPENDENT BOUNDARY CONDITIONS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2011;60(1):15-26.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.