BibTex RIS Cite

Some characterizations of timelike and spacelike curves with harmonic 1-type Darboux instantaneous rotation vector in the Minkowski 3-space E3 1

Year 2013, , 21 - 32, 01.02.2013
https://doi.org/10.1501/Commua1_0000000683

Abstract

References

  • A. Altın, Harmonic curvatures of non-null curves and the helix in Rn, Hacettepe Bul. of Nat. v Sci. and Eng., Vol. 30 (2001) 55-61.
  • K. Arslan, Y. Aydın, G. Öztürk, H. Ugail, Biminimal Curves in Euclidean Spaces, Interna- tional Electronic Journal of Geometry, 2 (2009) 46-52.
  • M. Barros, O.J. Gray, On Submanifolds with Harmonic Mean Curvature, Proc. Amer. Math. Soc., 123 (1995) 2545-2549.
  • B.Y. Chen, S. Ishikawa, Biharmonic surface in pseudo-Euclidean spaces, Mem. Fac. Sci. Kyushu Univ., A 45 (1991) 323-347.
  • N. Chouaieb, A. Goriely, J.H. Maddocks, Helices, PNAS 103 (25) (2006) 9398-9403.
  • A. Ferrandez, P. Lucas, M.A. Merono, Biharmonic Hopf cylinders, Rocky Mountain J., 28 (1998) 957-975.
  • H.H. Hacısalihoµglu, R. Öztürk, On the characterization of inclined curves in En- I., Tensor, N., S., 64 (2003) 157-162.
  • H.H. Hacısalihoµglu, R. Öztürk, On the characterization of inclined curves in En- II., Tensor, N., S., 64 (2003) 163-169.
  • S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turk J. Math. Vol. 28 (2004) 153-163.
  • B. Kılıç, K. Arslan, Harmonic 1-type submanifolds of Euclidean spaces, Int. J. Math. Stat., (2008) A08, 47-53.
  • H. Kocayiµgit, Biharmonic Curves in Lorentz 3-Manifolds and Contact Geometry, Ph. D. Thesis, Ankara University, (2004).
  • H. Kocayiµgit, M. Önder, Timelike curves of constant slope in Minkowski space E4, BU/JST, , BU/JST, Vol. 1 (2) (2007) 311-318.
  • A. Lucas Amand, P. Lambin, Diğraction by DNA, carbon nanotubes and other helical nanos- tructures, Rep. Prog. Phys. 68 (2005) 1181-1249.
  • A. Maµgden, On the curves of constant slope, YYÜ Fen Bilimleri Dergisi, Vol. 4 (1993) 103-109.
  • B. O’neill, Semi-Riemannian Geometry, Academic Press 1983.
  • M. Petrovic-Torgasev, E. Sucurovic, W-curves in Minkowski spac-time, Novi Sad J. Math., Vol. 32 No. 2 (2002) 55-65.
  • D.J. Struik, Lectures on Classical Diğerential Geometry, 2nd ed. Addison Wesley, Dover, (1988).
  • H.H. Uµgurlu, A. Çalı¸skan, Darboux Ani Dönme Vektörleri ile Spacelike ve Timelike Yüzeyler Geometrisi, Celal Bayar Üniversitesi Yayınları, Yayın No: 0006. (2012).
  • J. Walrave, Curves and surfaces in Minkowski space, Doctoral thesis, K. U. Leuven, Fac. Of Science, Leuven, (1995).
  • J.D. Watson, F.H.C. Crick, Genetic implications of the structure of deoxyribonucleic acid, Nature, 171 (1953) 964-967.
  • X. Yang, High accuracy approximation of helices by quintic curve, Comput. Aided Geometric Design, 20 (2003) 303-317.
  • Current address : Hüseyin Kocayiµgit and Mehmet Önder; Department of Mathematics Faculty of Science and Arts Celal Bayar University, 45047, Manisa, TURKEY
  • Kadri Arslan; Department of Mathematics Science and Arts Faculty Uludaµg University, 16059 Bursa, TURKEY
  • E-mail address : huseyin.kocayigit@bayar.edu.tr, mehmet.onder@bayar.edu.tr, mehmetlider@mynet.com URL: http://communications.science.ankara.edu.tr/index.php?series=A1

Some characterizations of timelike and spacelike curves with harmonic 1-type Darboux instantaneous rotation vector in the Minkowski 3-space E3 1

Year 2013, , 21 - 32, 01.02.2013
https://doi.org/10.1501/Commua1_0000000683

Abstract

In this study, by using Laplacian and normal Laplacian operators,
some characterizations on the Darboux instantaneous rotation vector field of
timelike and spacelike curves are given in Minkowski 3-space E3 1

References

  • A. Altın, Harmonic curvatures of non-null curves and the helix in Rn, Hacettepe Bul. of Nat. v Sci. and Eng., Vol. 30 (2001) 55-61.
  • K. Arslan, Y. Aydın, G. Öztürk, H. Ugail, Biminimal Curves in Euclidean Spaces, Interna- tional Electronic Journal of Geometry, 2 (2009) 46-52.
  • M. Barros, O.J. Gray, On Submanifolds with Harmonic Mean Curvature, Proc. Amer. Math. Soc., 123 (1995) 2545-2549.
  • B.Y. Chen, S. Ishikawa, Biharmonic surface in pseudo-Euclidean spaces, Mem. Fac. Sci. Kyushu Univ., A 45 (1991) 323-347.
  • N. Chouaieb, A. Goriely, J.H. Maddocks, Helices, PNAS 103 (25) (2006) 9398-9403.
  • A. Ferrandez, P. Lucas, M.A. Merono, Biharmonic Hopf cylinders, Rocky Mountain J., 28 (1998) 957-975.
  • H.H. Hacısalihoµglu, R. Öztürk, On the characterization of inclined curves in En- I., Tensor, N., S., 64 (2003) 157-162.
  • H.H. Hacısalihoµglu, R. Öztürk, On the characterization of inclined curves in En- II., Tensor, N., S., 64 (2003) 163-169.
  • S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turk J. Math. Vol. 28 (2004) 153-163.
  • B. Kılıç, K. Arslan, Harmonic 1-type submanifolds of Euclidean spaces, Int. J. Math. Stat., (2008) A08, 47-53.
  • H. Kocayiµgit, Biharmonic Curves in Lorentz 3-Manifolds and Contact Geometry, Ph. D. Thesis, Ankara University, (2004).
  • H. Kocayiµgit, M. Önder, Timelike curves of constant slope in Minkowski space E4, BU/JST, , BU/JST, Vol. 1 (2) (2007) 311-318.
  • A. Lucas Amand, P. Lambin, Diğraction by DNA, carbon nanotubes and other helical nanos- tructures, Rep. Prog. Phys. 68 (2005) 1181-1249.
  • A. Maµgden, On the curves of constant slope, YYÜ Fen Bilimleri Dergisi, Vol. 4 (1993) 103-109.
  • B. O’neill, Semi-Riemannian Geometry, Academic Press 1983.
  • M. Petrovic-Torgasev, E. Sucurovic, W-curves in Minkowski spac-time, Novi Sad J. Math., Vol. 32 No. 2 (2002) 55-65.
  • D.J. Struik, Lectures on Classical Diğerential Geometry, 2nd ed. Addison Wesley, Dover, (1988).
  • H.H. Uµgurlu, A. Çalı¸skan, Darboux Ani Dönme Vektörleri ile Spacelike ve Timelike Yüzeyler Geometrisi, Celal Bayar Üniversitesi Yayınları, Yayın No: 0006. (2012).
  • J. Walrave, Curves and surfaces in Minkowski space, Doctoral thesis, K. U. Leuven, Fac. Of Science, Leuven, (1995).
  • J.D. Watson, F.H.C. Crick, Genetic implications of the structure of deoxyribonucleic acid, Nature, 171 (1953) 964-967.
  • X. Yang, High accuracy approximation of helices by quintic curve, Comput. Aided Geometric Design, 20 (2003) 303-317.
  • Current address : Hüseyin Kocayiµgit and Mehmet Önder; Department of Mathematics Faculty of Science and Arts Celal Bayar University, 45047, Manisa, TURKEY
  • Kadri Arslan; Department of Mathematics Science and Arts Faculty Uludaµg University, 16059 Bursa, TURKEY
  • E-mail address : huseyin.kocayigit@bayar.edu.tr, mehmet.onder@bayar.edu.tr, mehmetlider@mynet.com URL: http://communications.science.ankara.edu.tr/index.php?series=A1
There are 24 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Hüseyin Kocayiğit This is me

Mehmet Önder This is me

Kadri Arslan This is me

Publication Date February 1, 2013
Published in Issue Year 2013

Cite

APA Kocayiğit, H., Önder, M., & Arslan, K. (2013). Some characterizations of timelike and spacelike curves with harmonic 1-type Darboux instantaneous rotation vector in the Minkowski 3-space E3 1. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 62(1), 21-32. https://doi.org/10.1501/Commua1_0000000683
AMA Kocayiğit H, Önder M, Arslan K. Some characterizations of timelike and spacelike curves with harmonic 1-type Darboux instantaneous rotation vector in the Minkowski 3-space E3 1. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2013;62(1):21-32. doi:10.1501/Commua1_0000000683
Chicago Kocayiğit, Hüseyin, Mehmet Önder, and Kadri Arslan. “Some Characterizations of Timelike and Spacelike Curves With Harmonic 1-Type Darboux Instantaneous Rotation Vector in the Minkowski 3-Space E3 1”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 62, no. 1 (February 2013): 21-32. https://doi.org/10.1501/Commua1_0000000683.
EndNote Kocayiğit H, Önder M, Arslan K (February 1, 2013) Some characterizations of timelike and spacelike curves with harmonic 1-type Darboux instantaneous rotation vector in the Minkowski 3-space E3 1. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 62 1 21–32.
IEEE H. Kocayiğit, M. Önder, and K. Arslan, “Some characterizations of timelike and spacelike curves with harmonic 1-type Darboux instantaneous rotation vector in the Minkowski 3-space E3 1”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 62, no. 1, pp. 21–32, 2013, doi: 10.1501/Commua1_0000000683.
ISNAD Kocayiğit, Hüseyin et al. “Some Characterizations of Timelike and Spacelike Curves With Harmonic 1-Type Darboux Instantaneous Rotation Vector in the Minkowski 3-Space E3 1”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 62/1 (February 2013), 21-32. https://doi.org/10.1501/Commua1_0000000683.
JAMA Kocayiğit H, Önder M, Arslan K. Some characterizations of timelike and spacelike curves with harmonic 1-type Darboux instantaneous rotation vector in the Minkowski 3-space E3 1. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2013;62:21–32.
MLA Kocayiğit, Hüseyin et al. “Some Characterizations of Timelike and Spacelike Curves With Harmonic 1-Type Darboux Instantaneous Rotation Vector in the Minkowski 3-Space E3 1”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 62, no. 1, 2013, pp. 21-32, doi:10.1501/Commua1_0000000683.
Vancouver Kocayiğit H, Önder M, Arslan K. Some characterizations of timelike and spacelike curves with harmonic 1-type Darboux instantaneous rotation vector in the Minkowski 3-space E3 1. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2013;62(1):21-32.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.