BibTex RIS Cite

Cone convergence for multiple sequences

Year 2013, , 115 - 119, 01.02.2013
https://doi.org/10.1501/Commua1_0000000690

Abstract

References

  • H. Fast, Sur la convergence statistique, Colloq. Math. 2(1951), 241–244.
  • H.J. Hamilton, Transformations of multiple sequences, Duke Math. J. 2(1936), 29–60.
  • A Pringsheim, Zur theorie der zweifach unend lichen Zahlenfolgen, Math. Ann. 53(3)(1900), 289–321.
  • G.M. Robinson, Divergent double sequences and series, Trans. Amer. Math. Soc. 28(1926), 50–73.
  • B.C. Tripathy, Statistically convergent double sequences, Tamkang J. Math. 34(3)(2003), 231– 237.
  • B.C. Tripathy, On I-convergent double sequences, Soochow J. Math. 31(4)(2005), 549–560.
  • Mursaleen, O.H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288(2003), 223–231.

Cone convergence for multiple sequences

Year 2013, , 115 - 119, 01.02.2013
https://doi.org/10.1501/Commua1_0000000690

Abstract

The aim of this paper is to introduce a new type convergencewhich is useful when a d-multiple sequence is not convergent in some usualsenses

References

  • H. Fast, Sur la convergence statistique, Colloq. Math. 2(1951), 241–244.
  • H.J. Hamilton, Transformations of multiple sequences, Duke Math. J. 2(1936), 29–60.
  • A Pringsheim, Zur theorie der zweifach unend lichen Zahlenfolgen, Math. Ann. 53(3)(1900), 289–321.
  • G.M. Robinson, Divergent double sequences and series, Trans. Amer. Math. Soc. 28(1926), 50–73.
  • B.C. Tripathy, Statistically convergent double sequences, Tamkang J. Math. 34(3)(2003), 231– 237.
  • B.C. Tripathy, On I-convergent double sequences, Soochow J. Math. 31(4)(2005), 549–560.
  • Mursaleen, O.H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288(2003), 223–231.
There are 7 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Ahmet Şahiner This is me

Publication Date February 1, 2013
Published in Issue Year 2013

Cite

APA Şahiner, A. (2013). Cone convergence for multiple sequences. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 62(1), 115-119. https://doi.org/10.1501/Commua1_0000000690
AMA Şahiner A. Cone convergence for multiple sequences. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2013;62(1):115-119. doi:10.1501/Commua1_0000000690
Chicago Şahiner, Ahmet. “Cone Convergence for Multiple Sequences”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 62, no. 1 (February 2013): 115-19. https://doi.org/10.1501/Commua1_0000000690.
EndNote Şahiner A (February 1, 2013) Cone convergence for multiple sequences. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 62 1 115–119.
IEEE A. Şahiner, “Cone convergence for multiple sequences”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 62, no. 1, pp. 115–119, 2013, doi: 10.1501/Commua1_0000000690.
ISNAD Şahiner, Ahmet. “Cone Convergence for Multiple Sequences”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 62/1 (February 2013), 115-119. https://doi.org/10.1501/Commua1_0000000690.
JAMA Şahiner A. Cone convergence for multiple sequences. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2013;62:115–119.
MLA Şahiner, Ahmet. “Cone Convergence for Multiple Sequences”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 62, no. 1, 2013, pp. 115-9, doi:10.1501/Commua1_0000000690.
Vancouver Şahiner A. Cone convergence for multiple sequences. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2013;62(1):115-9.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.