BibTex RIS Cite

ON EXPONENTIALLY SEPARATED DIFFERENTIAL SYSTEMS

Year 2014, , 101 - 107, 01.08.2014
https://doi.org/10.1501/Commua1_0000000715

Abstract

Exponentially separated linear homogeneous system of ordinarydifferential equations with continuous limited coe¢ cients in critical cases ofLyapunov exponents is considered. The generalized exponentially separatedlinear system of differential equations with regard to a monotonically increasingfunction is defined.It is established that if a linear homogeneous systemof differential equations is generalized exponentially separated, Lyapunov’sgeneralized exponents are stable in a class of small perturbations

References

  • [1] Aldibekov T.M. The Analog of Lyapunovís Theorem on Stability at the First Approximation // Di§erential Equations. ñ 2006. ñ V.42, 16. ñ p.p. 859-860.
  • [3] Aldibekov T.M. Lyapunovís Generalized Exponents. ñ Almaty., 2011. ñ 254 p.
  • [4] Aldibekov T.M., Aldazharova M.M. On the Stability in the First Approximation in Critical Cases of Lyapunov Characteristic Exponents // Di§erential Equations. ñ2013. ñVol. 49, No. 6. ñ p. 2013.
  • [6] Bylov B.F. On Linear Equation System Reduction to a Diagonal Aspect // Mathematical Collection. ñ 1965. ñ V. 67, 13. ñ p.p. 338-344.
  • [7] Vinograd R.E. DAN USSR. ñ 1958. ñ V. 119, 14. ñ p.p. 633-635.
  • [8] Lillo J.C. Acta Math., 103, 1960, 123-128.
  • [9] Millionshchikov V.M. Systems with Integral Separation are Dense Everywhere in the Set of Linear Systems of Di§erential Equations // Di§erential Equations. ñ 1969. ñ V.5, 17. ñ p.p. 1167-1170.
  • [10] Millionshchikov V.M. On exponents of Exponential Separation // Mathematical Collection. ñ 1984. ñ V.124 (166). 14 ñ p.p. 451-485.
  • [11] Nemytskii V.V., Stepanov V.V. Qualitative Theory of Di§erential Equations. ñ M ñ L.: Gostekhizdat, 1949. ñ 551 p.
  • [12] Perron O. Uber lineare Di§erentialgleichungen, bei denen die unabhangige Variable reel ist. J. Reine und angew. // Math., ñ 1931. ñ B.142. ñ p.p. 254-270.
Year 2014, , 101 - 107, 01.08.2014
https://doi.org/10.1501/Commua1_0000000715

Abstract

References

  • [1] Aldibekov T.M. The Analog of Lyapunovís Theorem on Stability at the First Approximation // Di§erential Equations. ñ 2006. ñ V.42, 16. ñ p.p. 859-860.
  • [3] Aldibekov T.M. Lyapunovís Generalized Exponents. ñ Almaty., 2011. ñ 254 p.
  • [4] Aldibekov T.M., Aldazharova M.M. On the Stability in the First Approximation in Critical Cases of Lyapunov Characteristic Exponents // Di§erential Equations. ñ2013. ñVol. 49, No. 6. ñ p. 2013.
  • [6] Bylov B.F. On Linear Equation System Reduction to a Diagonal Aspect // Mathematical Collection. ñ 1965. ñ V. 67, 13. ñ p.p. 338-344.
  • [7] Vinograd R.E. DAN USSR. ñ 1958. ñ V. 119, 14. ñ p.p. 633-635.
  • [8] Lillo J.C. Acta Math., 103, 1960, 123-128.
  • [9] Millionshchikov V.M. Systems with Integral Separation are Dense Everywhere in the Set of Linear Systems of Di§erential Equations // Di§erential Equations. ñ 1969. ñ V.5, 17. ñ p.p. 1167-1170.
  • [10] Millionshchikov V.M. On exponents of Exponential Separation // Mathematical Collection. ñ 1984. ñ V.124 (166). 14 ñ p.p. 451-485.
  • [11] Nemytskii V.V., Stepanov V.V. Qualitative Theory of Di§erential Equations. ñ M ñ L.: Gostekhizdat, 1949. ñ 551 p.
  • [12] Perron O. Uber lineare Di§erentialgleichungen, bei denen die unabhangige Variable reel ist. J. Reine und angew. // Math., ñ 1931. ñ B.142. ñ p.p. 254-270.
There are 10 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Tamasha Aldıbekov This is me

Publication Date August 1, 2014
Published in Issue Year 2014

Cite

APA Aldıbekov, T. (2014). ON EXPONENTIALLY SEPARATED DIFFERENTIAL SYSTEMS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 63(2), 101-107. https://doi.org/10.1501/Commua1_0000000715
AMA Aldıbekov T. ON EXPONENTIALLY SEPARATED DIFFERENTIAL SYSTEMS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2014;63(2):101-107. doi:10.1501/Commua1_0000000715
Chicago Aldıbekov, Tamasha. “ON EXPONENTIALLY SEPARATED DIFFERENTIAL SYSTEMS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 63, no. 2 (August 2014): 101-7. https://doi.org/10.1501/Commua1_0000000715.
EndNote Aldıbekov T (August 1, 2014) ON EXPONENTIALLY SEPARATED DIFFERENTIAL SYSTEMS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 63 2 101–107.
IEEE T. Aldıbekov, “ON EXPONENTIALLY SEPARATED DIFFERENTIAL SYSTEMS”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 63, no. 2, pp. 101–107, 2014, doi: 10.1501/Commua1_0000000715.
ISNAD Aldıbekov, Tamasha. “ON EXPONENTIALLY SEPARATED DIFFERENTIAL SYSTEMS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 63/2 (August 2014), 101-107. https://doi.org/10.1501/Commua1_0000000715.
JAMA Aldıbekov T. ON EXPONENTIALLY SEPARATED DIFFERENTIAL SYSTEMS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2014;63:101–107.
MLA Aldıbekov, Tamasha. “ON EXPONENTIALLY SEPARATED DIFFERENTIAL SYSTEMS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 63, no. 2, 2014, pp. 101-7, doi:10.1501/Commua1_0000000715.
Vancouver Aldıbekov T. ON EXPONENTIALLY SEPARATED DIFFERENTIAL SYSTEMS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2014;63(2):101-7.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.