BibTex RIS Cite

POSITIVE SOLUTIONS FOR A FRACTIONAL BOUNDARY VALUE PROBLEM

Year 2014, , 177 - 187, 01.08.2014
https://doi.org/10.1501/Commua1_0000000722

Abstract

We discuss the existence of positive solutions for a fractional boundary value problem by the help of some fixed point theorems and under suitableconditions on the nonlinear term. Two examples are also included to illustratethat the corresponding assumptions are satisfied

References

  • R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Positive Solutions Of Diğ erential Diğ erence and Integral Equations, Kluwer Academic Publisher, Boston, 1999.
  • B. Ahmed, J.J. Nieto, Anti-periodic fractional boundary value problems, Comput. Math. Appl. 62 (3) (2011), 1150-1156.
  • B. Ahmed, J.J. Nieto, J. Pimentel, Some boundary value problems of fractional diğ erential equations and inclusions, Comput. Math. Appl. 62 (3) (2011), 1238-1250.
  • A. Ashyralyev, Y.A. Sharifov, Existence and uniqueness of solutions for the system of non- linear fractional diğ erential equations with nonlocal and integral boundary conditions, Abstr. Appl. Anal. 2012, Article ID 594802, 14pp.
  • R.I. Avery, A.C. Peterson, Three positive …xed points of nonlinear operators on ordered Banach spaces, Comput. Math. Appl. 42 (35) (2001), 313-322.
  • D. Amanov, Solvability of boundary value problems for equation of higher order with frac- tional derivatives, in boundary value problem for Diğerential Equations, The collection of Proceeding no. 17, 204–209 chernovsti, Russia, 2008.
  • D. Amanov, A. Ashyralyev, Initial boundary value problem for fractional partial diğ erential equations of higher order, Abstr. Appl. Anal. 2012, doi. 10.1155/2012/973102.
  • A. Ashyralyev, A note on fractional derivatives and fractional powers of operators, J. Math. Anal. Appl. 357 (1) (2009), 232-236.
  • A. Ashyralyev, A well-posedness of fractional parabolic equations, Bound. Value Probl. 2013, doi. 10.1186/1687-2770-2013-31.
  • A. Ashyralyev, F. Dal, Finite diğ erence and iteration methods for fractional hyperbolic partial diğ erential equations with the Neumann condition Discrete Dyn. Nat. Soc. 2012, doi. 10. 1155/2012/434976.
  • A. Ashyralyev, B. Hicdurmaz, A note on the fractional Schrodinger diğ erential equations, Kybernetes 40 (5-6) (2011), 736-750.
  • A. Ashyralyev, Z. Cakir, FDM for fractional parabolic equations with the Neumann condition, Adv. Diğer. Equ. 2013, 2013:120.
  • Z. Bai, On positive solutions of nonlocal fractional boundary value problem, Nonlinear Analy- sis 72 (2) (2010), 916-924.
  • Z. Bai, H. Lu, Positive solutions for boundary value problem of a nonlinear fractional diğ er- ential equation, J. Math. Anal. Appl. 311 (2) (2005), 495-505.
  • B. Bonilla, M. Rivero, L. Rodriguez-Germa, J.J. Trujillo, Fractional diğ erential equations as alternative models to nonlinear diğ erential equations, Appl. Math. Comput. 187 (1) (2007), 79-88.
  • M. El-Shahed, Positive solutions for boundary value problem of nonlinear fractional diğ er- ential equation, Abstr. Appl. Anal. 2007, Article ID 10368, 8 pages.
  • L.J. Grimm, Existence and continuous dependence for a class of nonlinear neutral-diğ erential equations, Proc. Amer. Math. Soc. 29 (1971), 525-536.
  • A. Guezane-Lakoud, R. Khaldi, Solvability of two-point fractional boundary value problem, J. Nonlinear Sci. Appl. 5 (2012), 64-73.
  • A. Guezane-Lakoud, R. Khaldi, Positive solution to a higher order fractional boundary value problem with fractional integral condition, Romanian J. Math. Comput. Sci. 2 (2012), 28-40. [20] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Diğ erential Equations, North-Holland Mathematics Studies 204, Elsevier, Amsterdam, The Netherlands, 2006.
  • V. Lakshmikantham, A.S. Vatsala, Basic theory of fractional diğ erential equations, Nonlinear Anal., Theory Methods Appl. 69 (8) (2008), 2677-2682.
  • K.S. Miller, B. Ross, An introduction to the fractional calculus and diğ erential equations, John Wiley, New York, 1993.
  • I. Podlubny, Fractional Diğ erential Equations, 198 Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999.
  • J.R.L. Webb, G. Infante, D. Franco, Positive solutions of nonlinear fourth-order boundary- value problems with local and non-local boundary conditions, Proc. R. Soc. Edinb., Sect. A, Math. 138 (2) (2008), 427-446.
  • J.R.L. Webb, G. Infante, Positive solutions of nonlocal boundary value problems involving integral conditions, Nonlinear Diğer. Equ. Appl. NoDEA, 15 (1-2) (2008), 45-67.
  • A. Yakar, M.E. Koksal, Existence results for solutions of nonlinear fractional diğ erential equations, Abst. Appl. Anal. 2012, Article ID 267108, 12 pages.
  • Current address : A. Guezane-Lakoud andS. Kouachi; Laboratory of Advanced Materials, Fac- ulty of Sciences, Badji Mokhtar-Annaba University, P.O. Box 12, 23000 Annaba, ALGERIA, F. Ellaggoune; Laboratory of Applied Mathematics and Modeling, University 8 mai 1945 - Guelma, P.O. Box 401, Guelma 24000, ALGERIA
Year 2014, , 177 - 187, 01.08.2014
https://doi.org/10.1501/Commua1_0000000722

Abstract

References

  • R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Positive Solutions Of Diğ erential Diğ erence and Integral Equations, Kluwer Academic Publisher, Boston, 1999.
  • B. Ahmed, J.J. Nieto, Anti-periodic fractional boundary value problems, Comput. Math. Appl. 62 (3) (2011), 1150-1156.
  • B. Ahmed, J.J. Nieto, J. Pimentel, Some boundary value problems of fractional diğ erential equations and inclusions, Comput. Math. Appl. 62 (3) (2011), 1238-1250.
  • A. Ashyralyev, Y.A. Sharifov, Existence and uniqueness of solutions for the system of non- linear fractional diğ erential equations with nonlocal and integral boundary conditions, Abstr. Appl. Anal. 2012, Article ID 594802, 14pp.
  • R.I. Avery, A.C. Peterson, Three positive …xed points of nonlinear operators on ordered Banach spaces, Comput. Math. Appl. 42 (35) (2001), 313-322.
  • D. Amanov, Solvability of boundary value problems for equation of higher order with frac- tional derivatives, in boundary value problem for Diğerential Equations, The collection of Proceeding no. 17, 204–209 chernovsti, Russia, 2008.
  • D. Amanov, A. Ashyralyev, Initial boundary value problem for fractional partial diğ erential equations of higher order, Abstr. Appl. Anal. 2012, doi. 10.1155/2012/973102.
  • A. Ashyralyev, A note on fractional derivatives and fractional powers of operators, J. Math. Anal. Appl. 357 (1) (2009), 232-236.
  • A. Ashyralyev, A well-posedness of fractional parabolic equations, Bound. Value Probl. 2013, doi. 10.1186/1687-2770-2013-31.
  • A. Ashyralyev, F. Dal, Finite diğ erence and iteration methods for fractional hyperbolic partial diğ erential equations with the Neumann condition Discrete Dyn. Nat. Soc. 2012, doi. 10. 1155/2012/434976.
  • A. Ashyralyev, B. Hicdurmaz, A note on the fractional Schrodinger diğ erential equations, Kybernetes 40 (5-6) (2011), 736-750.
  • A. Ashyralyev, Z. Cakir, FDM for fractional parabolic equations with the Neumann condition, Adv. Diğer. Equ. 2013, 2013:120.
  • Z. Bai, On positive solutions of nonlocal fractional boundary value problem, Nonlinear Analy- sis 72 (2) (2010), 916-924.
  • Z. Bai, H. Lu, Positive solutions for boundary value problem of a nonlinear fractional diğ er- ential equation, J. Math. Anal. Appl. 311 (2) (2005), 495-505.
  • B. Bonilla, M. Rivero, L. Rodriguez-Germa, J.J. Trujillo, Fractional diğ erential equations as alternative models to nonlinear diğ erential equations, Appl. Math. Comput. 187 (1) (2007), 79-88.
  • M. El-Shahed, Positive solutions for boundary value problem of nonlinear fractional diğ er- ential equation, Abstr. Appl. Anal. 2007, Article ID 10368, 8 pages.
  • L.J. Grimm, Existence and continuous dependence for a class of nonlinear neutral-diğ erential equations, Proc. Amer. Math. Soc. 29 (1971), 525-536.
  • A. Guezane-Lakoud, R. Khaldi, Solvability of two-point fractional boundary value problem, J. Nonlinear Sci. Appl. 5 (2012), 64-73.
  • A. Guezane-Lakoud, R. Khaldi, Positive solution to a higher order fractional boundary value problem with fractional integral condition, Romanian J. Math. Comput. Sci. 2 (2012), 28-40. [20] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Diğ erential Equations, North-Holland Mathematics Studies 204, Elsevier, Amsterdam, The Netherlands, 2006.
  • V. Lakshmikantham, A.S. Vatsala, Basic theory of fractional diğ erential equations, Nonlinear Anal., Theory Methods Appl. 69 (8) (2008), 2677-2682.
  • K.S. Miller, B. Ross, An introduction to the fractional calculus and diğ erential equations, John Wiley, New York, 1993.
  • I. Podlubny, Fractional Diğ erential Equations, 198 Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999.
  • J.R.L. Webb, G. Infante, D. Franco, Positive solutions of nonlinear fourth-order boundary- value problems with local and non-local boundary conditions, Proc. R. Soc. Edinb., Sect. A, Math. 138 (2) (2008), 427-446.
  • J.R.L. Webb, G. Infante, Positive solutions of nonlocal boundary value problems involving integral conditions, Nonlinear Diğer. Equ. Appl. NoDEA, 15 (1-2) (2008), 45-67.
  • A. Yakar, M.E. Koksal, Existence results for solutions of nonlinear fractional diğ erential equations, Abst. Appl. Anal. 2012, Article ID 267108, 12 pages.
  • Current address : A. Guezane-Lakoud andS. Kouachi; Laboratory of Advanced Materials, Fac- ulty of Sciences, Badji Mokhtar-Annaba University, P.O. Box 12, 23000 Annaba, ALGERIA, F. Ellaggoune; Laboratory of Applied Mathematics and Modeling, University 8 mai 1945 - Guelma, P.O. Box 401, Guelma 24000, ALGERIA
There are 26 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

A. Guezane-lakoud This is me

S. Kouachı This is me

F. Ellaggoune This is me

Publication Date August 1, 2014
Published in Issue Year 2014

Cite

APA Guezane-lakoud, A., Kouachı, S., & Ellaggoune, F. (2014). POSITIVE SOLUTIONS FOR A FRACTIONAL BOUNDARY VALUE PROBLEM. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 63(2), 177-187. https://doi.org/10.1501/Commua1_0000000722
AMA Guezane-lakoud A, Kouachı S, Ellaggoune F. POSITIVE SOLUTIONS FOR A FRACTIONAL BOUNDARY VALUE PROBLEM. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2014;63(2):177-187. doi:10.1501/Commua1_0000000722
Chicago Guezane-lakoud, A., S. Kouachı, and F. Ellaggoune. “POSITIVE SOLUTIONS FOR A FRACTIONAL BOUNDARY VALUE PROBLEM”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 63, no. 2 (August 2014): 177-87. https://doi.org/10.1501/Commua1_0000000722.
EndNote Guezane-lakoud A, Kouachı S, Ellaggoune F (August 1, 2014) POSITIVE SOLUTIONS FOR A FRACTIONAL BOUNDARY VALUE PROBLEM. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 63 2 177–187.
IEEE A. Guezane-lakoud, S. Kouachı, and F. Ellaggoune, “POSITIVE SOLUTIONS FOR A FRACTIONAL BOUNDARY VALUE PROBLEM”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 63, no. 2, pp. 177–187, 2014, doi: 10.1501/Commua1_0000000722.
ISNAD Guezane-lakoud, A. et al. “POSITIVE SOLUTIONS FOR A FRACTIONAL BOUNDARY VALUE PROBLEM”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 63/2 (August 2014), 177-187. https://doi.org/10.1501/Commua1_0000000722.
JAMA Guezane-lakoud A, Kouachı S, Ellaggoune F. POSITIVE SOLUTIONS FOR A FRACTIONAL BOUNDARY VALUE PROBLEM. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2014;63:177–187.
MLA Guezane-lakoud, A. et al. “POSITIVE SOLUTIONS FOR A FRACTIONAL BOUNDARY VALUE PROBLEM”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 63, no. 2, 2014, pp. 177-8, doi:10.1501/Commua1_0000000722.
Vancouver Guezane-lakoud A, Kouachı S, Ellaggoune F. POSITIVE SOLUTIONS FOR A FRACTIONAL BOUNDARY VALUE PROBLEM. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2014;63(2):177-8.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.