Research Article
BibTex RIS Cite
Year 2021, , 456 - 467, 30.06.2021
https://doi.org/10.31801/cfsuasmas.644689

Abstract

References

  • Al-Omari, A., Modak, S. and Noiri T., On θ-modifications of generalized topologies via hereditary classes, Commun. Korean Math. Soc. 31(4) (2016), 857-868. https://doi.org/10.4134/CKMS.c160002
  • Bandhopadhya, C. and Modak, S., A new topology via Ψ-operator, Proc. Nat. Acad. Sci. India, Sect. A Phys. Sci. 76(A)(IV) (2006), 317-320.
  • Dontchev, J., Idealization of Ganster-Reilly decomposition theorems, arXIV:math. Gn/9901017v1 [math.GN], 5 Jan 1999.
  • Dontchev, J., Ganster, M. and Rose, D., Ideal resolvability, Topology Appl. 93 (1999), 1-16. https://doi.org/10.1016/S0166-8641(97)00257-5
  • Hamlett, T. R. and Jankovic, D., Ideals in topological spaces and the set operator, Boll. Un. Mat.Ital. 4-B(7) (1990), 863-874.
  • Hashimoto, H., On the *-topology and its applications, Fund. Math. 91 (1976), 5-10.
  • Hayashi, E., Topologies defined by local properties, Math. Ann. 156 (1964), 205-215.
  • Jankovic, D. and Hamlett, T. R., New topologies from old via ideals, Amer. Math. Monthly 97 (1990), 295-310, https://doi.org/10.1080/00029890.1990.11995593.
  • Kuratowski, K., Topology, Vol. I, New York, Academic Press, 1966.
  • Modak, S., Some new topologies on ideal topological spaces, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 82(3) (2012), 233-243. https://doi.org/10.1007/s40010-0120039-3
  • Modak, S., Operators on grill M-space, Bol. Soc. Paran. Mat. 31(2) (2013), 101-107. https://doi.org/10.5269/bspm.v31i2.15547
  • Modak, S., Grill-filter spacs, J.Indian Math. Soc. 80(3-4) (2013), 313-320.
  • Modak, S., Minimal spaces with a mathematical structure, J. Assoc. Arab Univ. Basic Appl. Sci. 22 (2017), 98-101. https://doi.org/10.1016/j.jaubas.2016.05.005.
  • Modak, S. and Bandyopadhyay, C., A note on Ψ-operator, Bull. Malays. Math. Sci. Soc. 30(1) (2007), 43-48.
  • Modak, S., Garai, B. Mistry, S., Remarks on ideal M-space, Ann. Univ. Oradea Fasc. Mat. 19(1) (2012), 207-215.
  • Modak, S. and Noiri, T., Connectedness of ideal topological spaces, Filomat 29(4) (2015), 661-665.https://doi.org/10.2298/FIL1504661M
  • Newcomb, R. L., Topologies which are compact modulo an ideal, Ph. D. Dissertation, Univ. of Cal. at Santa Barbara (1967).
  • Natkaniec, T., On I-continuity and I-semicontinuity points, Math. Slovaca 36(3) (1986), 297-312.
  • Samuel, P., A topology formed from a given topology and ideal, J. London Math. Soc. 10 (1975), 409-416.
  • Selim, Sk., Islam., Md. M. and Modak, S., Characterizations of Hayashi-Samuel Spaces via Boundary Points, Commun. Adv. Math. Sci. 2(3) (2019), 219-226. https://doi.org/10.33434/cams.546925
  • Vaidyanathswamy, R., The localization theory in set-topology, Proc. Indian Acad. Sci. 20 (1945), 51-61. https://doi.org/10.1007/BF03048958

Set operators and associated functions

Year 2021, , 456 - 467, 30.06.2021
https://doi.org/10.31801/cfsuasmas.644689

Abstract

The study of two operators local function and the set operator $\psi$ on the ideal topological spaces are likely to be same to the study of closure and interior operator of the topological spaces. However, they are not exactly equal with the interior and closure operator of the topological spaces. In this context, we introduce two new set operators on the ideal topological spaces. Detail properties of these two operators are the part of this article. Furthermore, the operators interior (resp. $\psi$) and closure (local function) obey the relation $Int(A)$= X \ $Cl$(X \ A) (resp. $\psi$(A) = X \(X \A)$^*)$. We search the general method of these relations, through this manuscript.

References

  • Al-Omari, A., Modak, S. and Noiri T., On θ-modifications of generalized topologies via hereditary classes, Commun. Korean Math. Soc. 31(4) (2016), 857-868. https://doi.org/10.4134/CKMS.c160002
  • Bandhopadhya, C. and Modak, S., A new topology via Ψ-operator, Proc. Nat. Acad. Sci. India, Sect. A Phys. Sci. 76(A)(IV) (2006), 317-320.
  • Dontchev, J., Idealization of Ganster-Reilly decomposition theorems, arXIV:math. Gn/9901017v1 [math.GN], 5 Jan 1999.
  • Dontchev, J., Ganster, M. and Rose, D., Ideal resolvability, Topology Appl. 93 (1999), 1-16. https://doi.org/10.1016/S0166-8641(97)00257-5
  • Hamlett, T. R. and Jankovic, D., Ideals in topological spaces and the set operator, Boll. Un. Mat.Ital. 4-B(7) (1990), 863-874.
  • Hashimoto, H., On the *-topology and its applications, Fund. Math. 91 (1976), 5-10.
  • Hayashi, E., Topologies defined by local properties, Math. Ann. 156 (1964), 205-215.
  • Jankovic, D. and Hamlett, T. R., New topologies from old via ideals, Amer. Math. Monthly 97 (1990), 295-310, https://doi.org/10.1080/00029890.1990.11995593.
  • Kuratowski, K., Topology, Vol. I, New York, Academic Press, 1966.
  • Modak, S., Some new topologies on ideal topological spaces, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 82(3) (2012), 233-243. https://doi.org/10.1007/s40010-0120039-3
  • Modak, S., Operators on grill M-space, Bol. Soc. Paran. Mat. 31(2) (2013), 101-107. https://doi.org/10.5269/bspm.v31i2.15547
  • Modak, S., Grill-filter spacs, J.Indian Math. Soc. 80(3-4) (2013), 313-320.
  • Modak, S., Minimal spaces with a mathematical structure, J. Assoc. Arab Univ. Basic Appl. Sci. 22 (2017), 98-101. https://doi.org/10.1016/j.jaubas.2016.05.005.
  • Modak, S. and Bandyopadhyay, C., A note on Ψ-operator, Bull. Malays. Math. Sci. Soc. 30(1) (2007), 43-48.
  • Modak, S., Garai, B. Mistry, S., Remarks on ideal M-space, Ann. Univ. Oradea Fasc. Mat. 19(1) (2012), 207-215.
  • Modak, S. and Noiri, T., Connectedness of ideal topological spaces, Filomat 29(4) (2015), 661-665.https://doi.org/10.2298/FIL1504661M
  • Newcomb, R. L., Topologies which are compact modulo an ideal, Ph. D. Dissertation, Univ. of Cal. at Santa Barbara (1967).
  • Natkaniec, T., On I-continuity and I-semicontinuity points, Math. Slovaca 36(3) (1986), 297-312.
  • Samuel, P., A topology formed from a given topology and ideal, J. London Math. Soc. 10 (1975), 409-416.
  • Selim, Sk., Islam., Md. M. and Modak, S., Characterizations of Hayashi-Samuel Spaces via Boundary Points, Commun. Adv. Math. Sci. 2(3) (2019), 219-226. https://doi.org/10.33434/cams.546925
  • Vaidyanathswamy, R., The localization theory in set-topology, Proc. Indian Acad. Sci. 20 (1945), 51-61. https://doi.org/10.1007/BF03048958
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Shyamapada Modak 0000-0002-0226-2392

Sk Selim This is me 0000-0002-4226-2004

Publication Date June 30, 2021
Submission Date November 9, 2019
Acceptance Date March 3, 2021
Published in Issue Year 2021

Cite

APA Modak, S., & Selim, S. (2021). Set operators and associated functions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(1), 456-467. https://doi.org/10.31801/cfsuasmas.644689
AMA Modak S, Selim S. Set operators and associated functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2021;70(1):456-467. doi:10.31801/cfsuasmas.644689
Chicago Modak, Shyamapada, and Sk Selim. “Set Operators and Associated Functions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 1 (June 2021): 456-67. https://doi.org/10.31801/cfsuasmas.644689.
EndNote Modak S, Selim S (June 1, 2021) Set operators and associated functions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 1 456–467.
IEEE S. Modak and S. Selim, “Set operators and associated functions”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 1, pp. 456–467, 2021, doi: 10.31801/cfsuasmas.644689.
ISNAD Modak, Shyamapada - Selim, Sk. “Set Operators and Associated Functions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/1 (June 2021), 456-467. https://doi.org/10.31801/cfsuasmas.644689.
JAMA Modak S, Selim S. Set operators and associated functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:456–467.
MLA Modak, Shyamapada and Sk Selim. “Set Operators and Associated Functions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 1, 2021, pp. 456-67, doi:10.31801/cfsuasmas.644689.
Vancouver Modak S, Selim S. Set operators and associated functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(1):456-67.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.