Research Article
BibTex RIS Cite
Year 2021, , 397 - 425, 30.06.2021
https://doi.org/10.31801/cfsuasmas.663447

Abstract

References

  • Choi, S. U. S., Eastman, J. A., Enhancing thermal conductivity of fluids with nanoparticles, ASME Fluids Engineering, 231 (1995), 99-105.
  • Kakaç, S., Pramuanjaroenkij, A., Review of convective heat transfer enhancement with nanofluids, International Journal of Heat and Mass Transfer, 52 (13-14) (2009), 3187-3196, https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006.
  • Saidur, R., Leong, K. Y., Mohammad, H. A., A review on applications and challenges of nanofluids, Renewable and Sustainable Energy Reviews, 25(3) (2011), 1646-1668, https://doi.org/10.1016/j.rser.2010.11.035.
  • Wang, X. Q., Mujumdar, A.S., A review on nanofluids-part I:Theoretical and numerical investigations, Brazilian Journal of Chemical Engineering, 25(4) (2008), 613-630, https://doi.org/10.1590/S0104-66322008000400001.
  • Wang, X. Q., Mujumdar, A. S., A review on nanofluids-part II:Experiments and applications, Brazilian Journal of Chemical Engineering, 25(4) (2008), 631-648, https://doi.org/10.1590/S0104-66322008000400002.
  • Wen, D., Lin, G., Vafaei, S., Zhang, K., Review of nano‡uids for heat transfer applications, Particuology, 7(2) (2009), 141-150, https://doi.org/10.1016/j.partic.2009.01.007.
  • Yu W., France D. M., Routbort J. L., Choi S. U. S., Review and comparison of nanofluid thermal conductivity and heat transfer enhancements, Heat Transfer Engineering, 29(5) (2008), 432-460, https://doi.org/10.1080/01457630701850851.
  • Mahian, O., Kolsi, L., Amani, M., Estelle, P., Ahmadi, G., Kleinstreuer, C., Marshall, J. S., Siavashi, M., Taylor, R. A., Niazmand, H., Wongwises, S., Hayat, T., Kolanjiyil, A., Kasaeian, A. and Pop, I., Recent advances in modeling and simulation of nanofluid flows- Part I: Fundamental and theory, Physics Reports, 790 (2019), 1-48, https://doi.org/10.1016/j.physrep.2018.11.004.
  • Mahian, O., Kolsi, L., Amani, M., Estelle, P., Ahmadi, G., Kleinstreuer, C., Marshall, J.S., Siavashi, M., Taylor, R.A., Niazmand, H., Wongwises, S., Hayat, T., Kolanjiyil, A., Kasaeian, A. and Pop, I., Recent advances in modeling and simulation of nanofluid flows- Part II: Applications,Physics Reports, 791 (2019), 1-59, https://doi.org/10.1016/j.physrep.2018.11.004.
  • Beck, J. V., Blackwell, B., St. Clair, C.R., Inverse Heat Conduction Ill-Posed Problem, Wiley, New York, 1985.
  • Huang, C. H., Ozisik, M. N., Inverse problem of determining unknown wall heat flux in laminar flow through a parallel plate duct, Numer. Heat Tr. Part A, 21(1) (1992), 55-70, https://doi.org/10.1080/10407789208944865.
  • Rap, A., Elliott, L., Ingham, D. B., Lesnic, D., Wen, X., DRBEM for Cauchy convection-diffusion problems with variable coefficients, Eng. Anal. Bound. Elem., 28(11) (2004), 1321-1333, https://doi.org/10.1016/j.enganabound.2004.06.003.
  • Lesnic, D., Wake, G. C., A mollified method for the solution of the Cauchy problem for the convection-diffusion equation, Inverse Prob. Sci. Eng., 15(4) (2007), 293-302, https://doi.org/10.1080/17415970600839002.
  • Ranjbar, Z., Elden, L., Numerical analysis of an ill-posed Cauchy problem for convection-diffusion, Inverse Prob. Sci. Eng., 15(3) (2007), 191-211, https://doi.org/10.1080/17415970600557299.
  • Lesnic, D., The decomposition method for Cauchy advection-diffusion problems, Comput. Math. Appl., 49(4) (2005), 525-537, https://doi.org/10.1016/j.camwa.2004.10.031.
  • Marin, L., Elliott, L., Heggs, P. J., Ingham, D. B., Lesnic, D., Wen, X., Dual reciprocity boundary element method solution of the Cauchy problem for Helmholtz-type equations with variable coefficients, J. Sound Vibration, 297(1-2) (2006), 89-105, https://doi.org/10.1016/j.jsv.2006.03.045.
  • Zhuo, L., Lesnic, D., Ismailov, M. I., Tekin, I., Meng, S., Determination of the time-dependent reaction coefficition and the heat flux in a nonlinear inverse heat conduction problem, Int. J. Computer Mathematics, 96(10) (2019), 2079-2099, https://doi.org/10.1080/00207160.2018.1556790.
  • Li, Z. R., Prud'homme, M., Nguyen, T. H., A numerical solution for the inverse natural-convection problem, Numer. Heat Transfer Part B, 28(3) (1995), 307-321, https://doi.org/10.1080/10407799508928836.
  • Prud'homme, M., Nguyen, T. H., Whole time-domain approach to the inverse natural convection problem, Numer. Heat Transfer Part B, 32(2) (1997), 169-186, https://doi.org/10.1080/10407789708913886.
  • Alsoy-Akgün, N., Lesnic, D., A Numerical Solution for an Inverse Natural Magneto-Convection Problem, Numer. Heat Transfer Part B, 63(2) (2013), 115-138, https://doi.org/10.1080/10407790.2013.740978.
  • Aydin, C., Tezer-Sezgin, M., DRBEM solution of the Cauchy MHD duct flow with a slipping perturbed boundary, Eng. Anal. Bound. Elem., 93 (2018), 94-104, https://doi.org/10.1016/j.enganabound.2018.04.007.
  • Partridge, P. W., Brebbia, C. A., Wrobel, L. C., The Dual Reciprocity Boundary Element Method, Computational Mechanics Publications, Southampton, 1992.
  • Tikhonov, A. N., Arsenin, V. Y., Solution of Ill-Posed Problems, Winstonedsons, Washington, 1977.
  • Aminossadati, S. M., Ghasemi, B., Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure, European Journal of Mechanics B/Fluids, 28(5) (2009), 630-640, https://doi.org/10.1016/j.euromechflu.2009.05.006.
  • Brebbia, C. A., The Boundary Element Method for Engineers, Pentech Press, London, 1984.
  • Tezer-Sezgin, M., Boundary element method solution of MHD flow in a rec-tangular duct, Int. J. for Num. Methods in Fluids, 18(10) (1994), 937-952, https://doi.org/10.1002/fld.1650181004.
  • Alsoy-Akgün, N., Tezer-Sezgin, M., DRBEM and DQM solution of natural convection flow in cavity under a magnetic field, Progr in Comput. Fluid Dynamics, 13(5) (2013), 270-284, https://doi.org/10.1504/PCFD.2013.055056.

Implementation of DRBEM for the determination of the heat flux in an inverse problem

Year 2021, , 397 - 425, 30.06.2021
https://doi.org/10.31801/cfsuasmas.663447

Abstract

A numerical investigation of inverse unsteady natural convection flow in a square cavity filled with $Cu-$water nanofluid is performed. In the direct problem, the enclosure is bounded by one isothermally heated vertical wall at temperature Tm and by three adiabatic walls. In the inverse problem, the enclosure is bounded by right hostile wall on which no boundary condition can be prescribed or measured and by left accessible wall on which both the boundary temperature and heat flux data are overspecified. The dual reciprocity boundary element method (DRBEM) with the fundamental solutions of Laplace and modified Helmholtz equations is used for the solutions of direct and inverse problems. Inhomogeneities are approximated with radial basis functions. Computations are performed for several values of Rayleigh number (Ra), solid volume fraction (φ) and percentage of noise (ρ), and accurate and stable results are given for three forms of heat flux namely, steady heat flux (q=q(y)), time dependent uniform heat flux (q=q(t)) and non-uniform time dependent heat flux (q=q(y,t)).

References

  • Choi, S. U. S., Eastman, J. A., Enhancing thermal conductivity of fluids with nanoparticles, ASME Fluids Engineering, 231 (1995), 99-105.
  • Kakaç, S., Pramuanjaroenkij, A., Review of convective heat transfer enhancement with nanofluids, International Journal of Heat and Mass Transfer, 52 (13-14) (2009), 3187-3196, https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006.
  • Saidur, R., Leong, K. Y., Mohammad, H. A., A review on applications and challenges of nanofluids, Renewable and Sustainable Energy Reviews, 25(3) (2011), 1646-1668, https://doi.org/10.1016/j.rser.2010.11.035.
  • Wang, X. Q., Mujumdar, A.S., A review on nanofluids-part I:Theoretical and numerical investigations, Brazilian Journal of Chemical Engineering, 25(4) (2008), 613-630, https://doi.org/10.1590/S0104-66322008000400001.
  • Wang, X. Q., Mujumdar, A. S., A review on nanofluids-part II:Experiments and applications, Brazilian Journal of Chemical Engineering, 25(4) (2008), 631-648, https://doi.org/10.1590/S0104-66322008000400002.
  • Wen, D., Lin, G., Vafaei, S., Zhang, K., Review of nano‡uids for heat transfer applications, Particuology, 7(2) (2009), 141-150, https://doi.org/10.1016/j.partic.2009.01.007.
  • Yu W., France D. M., Routbort J. L., Choi S. U. S., Review and comparison of nanofluid thermal conductivity and heat transfer enhancements, Heat Transfer Engineering, 29(5) (2008), 432-460, https://doi.org/10.1080/01457630701850851.
  • Mahian, O., Kolsi, L., Amani, M., Estelle, P., Ahmadi, G., Kleinstreuer, C., Marshall, J. S., Siavashi, M., Taylor, R. A., Niazmand, H., Wongwises, S., Hayat, T., Kolanjiyil, A., Kasaeian, A. and Pop, I., Recent advances in modeling and simulation of nanofluid flows- Part I: Fundamental and theory, Physics Reports, 790 (2019), 1-48, https://doi.org/10.1016/j.physrep.2018.11.004.
  • Mahian, O., Kolsi, L., Amani, M., Estelle, P., Ahmadi, G., Kleinstreuer, C., Marshall, J.S., Siavashi, M., Taylor, R.A., Niazmand, H., Wongwises, S., Hayat, T., Kolanjiyil, A., Kasaeian, A. and Pop, I., Recent advances in modeling and simulation of nanofluid flows- Part II: Applications,Physics Reports, 791 (2019), 1-59, https://doi.org/10.1016/j.physrep.2018.11.004.
  • Beck, J. V., Blackwell, B., St. Clair, C.R., Inverse Heat Conduction Ill-Posed Problem, Wiley, New York, 1985.
  • Huang, C. H., Ozisik, M. N., Inverse problem of determining unknown wall heat flux in laminar flow through a parallel plate duct, Numer. Heat Tr. Part A, 21(1) (1992), 55-70, https://doi.org/10.1080/10407789208944865.
  • Rap, A., Elliott, L., Ingham, D. B., Lesnic, D., Wen, X., DRBEM for Cauchy convection-diffusion problems with variable coefficients, Eng. Anal. Bound. Elem., 28(11) (2004), 1321-1333, https://doi.org/10.1016/j.enganabound.2004.06.003.
  • Lesnic, D., Wake, G. C., A mollified method for the solution of the Cauchy problem for the convection-diffusion equation, Inverse Prob. Sci. Eng., 15(4) (2007), 293-302, https://doi.org/10.1080/17415970600839002.
  • Ranjbar, Z., Elden, L., Numerical analysis of an ill-posed Cauchy problem for convection-diffusion, Inverse Prob. Sci. Eng., 15(3) (2007), 191-211, https://doi.org/10.1080/17415970600557299.
  • Lesnic, D., The decomposition method for Cauchy advection-diffusion problems, Comput. Math. Appl., 49(4) (2005), 525-537, https://doi.org/10.1016/j.camwa.2004.10.031.
  • Marin, L., Elliott, L., Heggs, P. J., Ingham, D. B., Lesnic, D., Wen, X., Dual reciprocity boundary element method solution of the Cauchy problem for Helmholtz-type equations with variable coefficients, J. Sound Vibration, 297(1-2) (2006), 89-105, https://doi.org/10.1016/j.jsv.2006.03.045.
  • Zhuo, L., Lesnic, D., Ismailov, M. I., Tekin, I., Meng, S., Determination of the time-dependent reaction coefficition and the heat flux in a nonlinear inverse heat conduction problem, Int. J. Computer Mathematics, 96(10) (2019), 2079-2099, https://doi.org/10.1080/00207160.2018.1556790.
  • Li, Z. R., Prud'homme, M., Nguyen, T. H., A numerical solution for the inverse natural-convection problem, Numer. Heat Transfer Part B, 28(3) (1995), 307-321, https://doi.org/10.1080/10407799508928836.
  • Prud'homme, M., Nguyen, T. H., Whole time-domain approach to the inverse natural convection problem, Numer. Heat Transfer Part B, 32(2) (1997), 169-186, https://doi.org/10.1080/10407789708913886.
  • Alsoy-Akgün, N., Lesnic, D., A Numerical Solution for an Inverse Natural Magneto-Convection Problem, Numer. Heat Transfer Part B, 63(2) (2013), 115-138, https://doi.org/10.1080/10407790.2013.740978.
  • Aydin, C., Tezer-Sezgin, M., DRBEM solution of the Cauchy MHD duct flow with a slipping perturbed boundary, Eng. Anal. Bound. Elem., 93 (2018), 94-104, https://doi.org/10.1016/j.enganabound.2018.04.007.
  • Partridge, P. W., Brebbia, C. A., Wrobel, L. C., The Dual Reciprocity Boundary Element Method, Computational Mechanics Publications, Southampton, 1992.
  • Tikhonov, A. N., Arsenin, V. Y., Solution of Ill-Posed Problems, Winstonedsons, Washington, 1977.
  • Aminossadati, S. M., Ghasemi, B., Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure, European Journal of Mechanics B/Fluids, 28(5) (2009), 630-640, https://doi.org/10.1016/j.euromechflu.2009.05.006.
  • Brebbia, C. A., The Boundary Element Method for Engineers, Pentech Press, London, 1984.
  • Tezer-Sezgin, M., Boundary element method solution of MHD flow in a rec-tangular duct, Int. J. for Num. Methods in Fluids, 18(10) (1994), 937-952, https://doi.org/10.1002/fld.1650181004.
  • Alsoy-Akgün, N., Tezer-Sezgin, M., DRBEM and DQM solution of natural convection flow in cavity under a magnetic field, Progr in Comput. Fluid Dynamics, 13(5) (2013), 270-284, https://doi.org/10.1504/PCFD.2013.055056.
There are 27 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Articles
Authors

Nagehan Alsoy-akgün 0000-0001-6967-0625

Publication Date June 30, 2021
Submission Date December 23, 2019
Acceptance Date March 25, 2021
Published in Issue Year 2021

Cite

APA Alsoy-akgün, N. (2021). Implementation of DRBEM for the determination of the heat flux in an inverse problem. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(1), 397-425. https://doi.org/10.31801/cfsuasmas.663447
AMA Alsoy-akgün N. Implementation of DRBEM for the determination of the heat flux in an inverse problem. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2021;70(1):397-425. doi:10.31801/cfsuasmas.663447
Chicago Alsoy-akgün, Nagehan. “Implementation of DRBEM for the Determination of the Heat Flux in an Inverse Problem”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 1 (June 2021): 397-425. https://doi.org/10.31801/cfsuasmas.663447.
EndNote Alsoy-akgün N (June 1, 2021) Implementation of DRBEM for the determination of the heat flux in an inverse problem. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 1 397–425.
IEEE N. Alsoy-akgün, “Implementation of DRBEM for the determination of the heat flux in an inverse problem”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 1, pp. 397–425, 2021, doi: 10.31801/cfsuasmas.663447.
ISNAD Alsoy-akgün, Nagehan. “Implementation of DRBEM for the Determination of the Heat Flux in an Inverse Problem”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/1 (June 2021), 397-425. https://doi.org/10.31801/cfsuasmas.663447.
JAMA Alsoy-akgün N. Implementation of DRBEM for the determination of the heat flux in an inverse problem. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:397–425.
MLA Alsoy-akgün, Nagehan. “Implementation of DRBEM for the Determination of the Heat Flux in an Inverse Problem”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 1, 2021, pp. 397-25, doi:10.31801/cfsuasmas.663447.
Vancouver Alsoy-akgün N. Implementation of DRBEM for the determination of the heat flux in an inverse problem. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(1):397-425.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.