Research Article
BibTex RIS Cite
Year 2021, , 64 - 73, 30.06.2021
https://doi.org/10.31801/cfsuasmas.774658

Abstract

References

  • Abdullah, S., Aslam, M., Ullah, K., Bipolar fuzzy soft sets and its applications in decision making problem, Journal of Intelligent and Fuzzy Systems, 27 (2) (2014), 729-742.
  • Beaulaa, T., Gunaseeli, C., On fuzzy soft metric spaces, Malaya J. Mat., 2 (3) (2014), 197-202.
  • Demirtaş, N., Hussain, S., Dalkılıç, O., New approaches of inverse soft rough sets and their applications in a decision making problem, Journal of applied mathematics and informatics, 38 (3-4) (2020), 335-349.
  • Dhage, B.C., Generalized metric spaces mappings with fixed point, Bull. Calcutta Math. Soc., 84 (1992), 329-336.
  • Gahler, S., 2-metrische Raume und iher topoloische Struktur, Math. Nachr., 26 (1963), 115-148.
  • Molodtsov, D., Soft set theory-first results, Computers and Mathematics with Applications, 37 (1999), 19-31.
  • Pawlak, Z., Rough sets, International Journal of Computer and Information Sciences, 11 (5) (1982), 341-356.
  • Riaz, M., Hashmi, M. R., Linear Diophantine Fuzzy Set and its Applications towards Multi-Attribute Decision Making Problems, Journal of Intelligent & Fuzzy Systems, 37 (4) (2019), 5417-5439.
  • Riaz, M., Smarandache, F., Firdous, A., Fakhar, A., On soft rough topology with multi-attribute group decision making, Mathematics, 7 (1) (2019), 1-18.
  • Riaz, M., Tehrim, S. T., Bipolar Fuzzy Soft Mappings with Application to Bipolar Disorders, International Journal of Biomathematics, 12 (7) (2019) 1-31.
  • Riaz, M., Tehrim, S. T., A robust extension of VIKOR method for bipolar fuzzy sets using connection numbers of SPA theory based metric spaces, Artificial Intelligence Review, 1 (31) (2020).
  • Sayed, A.F., Alahmari, A., Fuzzy soft α-ψ-contractive type mappings and some fixed point theorems in fuzzy soft metric spaces, Ann. Fuzzy Math. Inform., 15 (1) (2018), 73-87.
  • Tehrim, S. T., Riaz, M., A novel extension of TOPSIS to MCGDM with Bipolar Neutrosophic soft topology, Journal of Intelligent & Fuzzy Systems, 4 (2019), 5531-5549.
  • Tehrim, S.T., Riaz, M., An Interval-Valued Bipolar Fuzzy Linguistic VIKOR Method using Connection Numbers of SPA Theory and Its Application to Decision Support System, Journal of Intelligent & Fuzzy Systems, 1 (18) (2020).
  • Zadeh, L. A., Fuzzy sets, Inf. Control., 8 (1965), 338-353.
  • Zhang, W.R., Bipolar fuzzy sets and relations: A computational framework for cognitive modeling and multiagent decision analysis, In Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference, 18-21 Dec., San Antonio, TX, USA, (1994).
  • Zhang, W.R., Bipolar fuzzy sets, In Proceedings of the 1998 IEEE International Conference on Fuzzy Systems, 4-9 May., Anchorage, AK, USA, (1998).

Bipolar fuzzy soft D-metric spaces

Year 2021, , 64 - 73, 30.06.2021
https://doi.org/10.31801/cfsuasmas.774658

Abstract

The first aim to this paper is to introduce the notions of bipolar fuzzy soft metric space and bipolar fuzzy soft (D-)metric space. In order to define these concepts, the concept of bipolar fuzzy soft points has been brought to the literature and bipolar fuzzy soft points have been examined in detail. Moreover, the bipolar fuzzy soft sequences and bipolar fuzzy soft cauchy sequences were defined and some of their properties were examined. In addition to all this, many examples are given in order to better understand the concepts and features studied and contribute to a better understanding of the paper.

References

  • Abdullah, S., Aslam, M., Ullah, K., Bipolar fuzzy soft sets and its applications in decision making problem, Journal of Intelligent and Fuzzy Systems, 27 (2) (2014), 729-742.
  • Beaulaa, T., Gunaseeli, C., On fuzzy soft metric spaces, Malaya J. Mat., 2 (3) (2014), 197-202.
  • Demirtaş, N., Hussain, S., Dalkılıç, O., New approaches of inverse soft rough sets and their applications in a decision making problem, Journal of applied mathematics and informatics, 38 (3-4) (2020), 335-349.
  • Dhage, B.C., Generalized metric spaces mappings with fixed point, Bull. Calcutta Math. Soc., 84 (1992), 329-336.
  • Gahler, S., 2-metrische Raume und iher topoloische Struktur, Math. Nachr., 26 (1963), 115-148.
  • Molodtsov, D., Soft set theory-first results, Computers and Mathematics with Applications, 37 (1999), 19-31.
  • Pawlak, Z., Rough sets, International Journal of Computer and Information Sciences, 11 (5) (1982), 341-356.
  • Riaz, M., Hashmi, M. R., Linear Diophantine Fuzzy Set and its Applications towards Multi-Attribute Decision Making Problems, Journal of Intelligent & Fuzzy Systems, 37 (4) (2019), 5417-5439.
  • Riaz, M., Smarandache, F., Firdous, A., Fakhar, A., On soft rough topology with multi-attribute group decision making, Mathematics, 7 (1) (2019), 1-18.
  • Riaz, M., Tehrim, S. T., Bipolar Fuzzy Soft Mappings with Application to Bipolar Disorders, International Journal of Biomathematics, 12 (7) (2019) 1-31.
  • Riaz, M., Tehrim, S. T., A robust extension of VIKOR method for bipolar fuzzy sets using connection numbers of SPA theory based metric spaces, Artificial Intelligence Review, 1 (31) (2020).
  • Sayed, A.F., Alahmari, A., Fuzzy soft α-ψ-contractive type mappings and some fixed point theorems in fuzzy soft metric spaces, Ann. Fuzzy Math. Inform., 15 (1) (2018), 73-87.
  • Tehrim, S. T., Riaz, M., A novel extension of TOPSIS to MCGDM with Bipolar Neutrosophic soft topology, Journal of Intelligent & Fuzzy Systems, 4 (2019), 5531-5549.
  • Tehrim, S.T., Riaz, M., An Interval-Valued Bipolar Fuzzy Linguistic VIKOR Method using Connection Numbers of SPA Theory and Its Application to Decision Support System, Journal of Intelligent & Fuzzy Systems, 1 (18) (2020).
  • Zadeh, L. A., Fuzzy sets, Inf. Control., 8 (1965), 338-353.
  • Zhang, W.R., Bipolar fuzzy sets and relations: A computational framework for cognitive modeling and multiagent decision analysis, In Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference, 18-21 Dec., San Antonio, TX, USA, (1994).
  • Zhang, W.R., Bipolar fuzzy sets, In Proceedings of the 1998 IEEE International Conference on Fuzzy Systems, 4-9 May., Anchorage, AK, USA, (1998).
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Orhan Dalkılıç 0000-0003-3875-1398

Naime Demirtaş 0000-0003-4137-4810

Publication Date June 30, 2021
Submission Date July 28, 2020
Acceptance Date November 12, 2020
Published in Issue Year 2021

Cite

APA Dalkılıç, O., & Demirtaş, N. (2021). Bipolar fuzzy soft D-metric spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(1), 64-73. https://doi.org/10.31801/cfsuasmas.774658
AMA Dalkılıç O, Demirtaş N. Bipolar fuzzy soft D-metric spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2021;70(1):64-73. doi:10.31801/cfsuasmas.774658
Chicago Dalkılıç, Orhan, and Naime Demirtaş. “Bipolar Fuzzy Soft D-Metric Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 1 (June 2021): 64-73. https://doi.org/10.31801/cfsuasmas.774658.
EndNote Dalkılıç O, Demirtaş N (June 1, 2021) Bipolar fuzzy soft D-metric spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 1 64–73.
IEEE O. Dalkılıç and N. Demirtaş, “Bipolar fuzzy soft D-metric spaces”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 1, pp. 64–73, 2021, doi: 10.31801/cfsuasmas.774658.
ISNAD Dalkılıç, Orhan - Demirtaş, Naime. “Bipolar Fuzzy Soft D-Metric Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/1 (June 2021), 64-73. https://doi.org/10.31801/cfsuasmas.774658.
JAMA Dalkılıç O, Demirtaş N. Bipolar fuzzy soft D-metric spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:64–73.
MLA Dalkılıç, Orhan and Naime Demirtaş. “Bipolar Fuzzy Soft D-Metric Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 1, 2021, pp. 64-73, doi:10.31801/cfsuasmas.774658.
Vancouver Dalkılıç O, Demirtaş N. Bipolar fuzzy soft D-metric spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(1):64-73.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.