Research Article
BibTex RIS Cite
Year 2021, , 483 - 496, 30.06.2021
https://doi.org/10.31801/cfsuasmas.780729

Abstract

References

  • Altun, I, Aslantas, M., Sahin, H., Best proximity point results for p-proximal contractions, Acta Math.Hunga, 162 (2020), 393-402. https://doi.org/10.1007/s10474-020-01036-3
  • Aslantas, M., Sahin, H., Altun, I., Best proximity point theorems for cyclic p-contractions with some consequences and applications, Nonlinear Analysis: Modelling and Control, 26(1) (2021), 113-129. https://doi.org/10.15388/namc.2021.26.21415
  • Aslantas, M., Sahin, H., Turkoglu, D., Some Caristi type fixed point theorems, The Journal of Analysis, 29 (2021), 89-103. https://doi.org/10.1007/s41478-020-00248-8
  • Basha, S. S., Shahzad, N. ,Vetro, C., Best proximity point theorems for proximal cyclic contractions, Journal of Fixed Point Theory and Applications, 19(4) (2017), 2647-2661. https://doi.org/10.1007/s11784-017-0447-8
  • Banach, S., Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fundamenta Mathematicae, 3(1) (1922), 133-181.
  • Czerwik, S., Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena, 46(2) (1998), 263-276.
  • Cevik, C., Altun, I., Sahin, H., Ozeken, C. C., Some fixed point theorems for contractive mapping in ordered vector metric spaces, J. Non. Sci. Ap., 10 (2017), 1424-1432. http://dx.doi.org/10.22436/jnsa.010.04.12
  • Eldred, A. A., Veeramani, P., Existence and convergence of best proximity points, Journal of Mathematical Analysis and Applications, 323(2) (2006), 1001-1006. https://doi.org/10.1016/j.jmaa.2005.10.081
  • Espínola, R., Kosuru, G. S. R., Veeramani, P., Pythagorean property and best-proximity point theorems, Journal of Optimization Theory and Applications, 164(2), (2015), 534-550. https://doi.org/10.1007/s10957-014-0583-x
  • Felhi, A., Aydi, H., Best proximity points and stability results for controlled proximal contractive set valued mappings, Fixed Point Theory and Applications, 2016(1), (2016), 22. https://doi.org/10.1186/s13663-016-0510-y
  • Kadelburg, Z., Radenovic, S., Fixed point and tripled fixed point theorems under Pata-Type conditions in ordered metric spaces, International Journal of Analysis and Applications, 6(1) (2014), 113-122.
  • Karpagam, S., Agrawal, S., Best proximity points for cyclic contractions, (preprint)
  • Kirk, W. A., Srinivasan, P.S., Veeramani, P., Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory, 4 (2003) 79-89.
  • Reich, S., Fixed points of contractive functions, Boll. Unione Mat. Ital.,5 (1972), 26-42.
  • Ozeken, C. C., Cevik, C., Unbounded vectorial Cauchy completion of vector metric spaces, Gazi Uni. J. of Sci., 33-3 (2020), 761-765. https://doi.org/10.35378/gujs.604784
  • Sahin, H., Best proximity point theory on vector metric spaces, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(1) (2021), 130-142. https://doi.org/10.31801/cfsuasmas.780723
  • Sahin, H., Aslantas, M., Altun, I., Feng-Liu type approach to best proximity point results for multivalued mappings, Journal of Fixed Point Theory and Applications, 22(1) (2020),11. https://doi.org/10.1007/s11784-019-0740-9

Best proximity point theorems for proximal b-cyclic contractions on b-metric spaces

Year 2021, , 483 - 496, 30.06.2021
https://doi.org/10.31801/cfsuasmas.780729

Abstract

In this paper, we first introduce a new notion of the property (M_{C}) to improve and generalize the property (G_{C}). After that, we present two new concepts, proximal b-cyclic contraction of first type and second type, on b-metric spaces. Then, we obtain two best proximity point results for such mappings in the frameworks of best proximally complete b-metric spaces by using the property (M_{C}). Hence, we generalize some results existing in the literature. Finally, we present some illustrative and interesting examples.

References

  • Altun, I, Aslantas, M., Sahin, H., Best proximity point results for p-proximal contractions, Acta Math.Hunga, 162 (2020), 393-402. https://doi.org/10.1007/s10474-020-01036-3
  • Aslantas, M., Sahin, H., Altun, I., Best proximity point theorems for cyclic p-contractions with some consequences and applications, Nonlinear Analysis: Modelling and Control, 26(1) (2021), 113-129. https://doi.org/10.15388/namc.2021.26.21415
  • Aslantas, M., Sahin, H., Turkoglu, D., Some Caristi type fixed point theorems, The Journal of Analysis, 29 (2021), 89-103. https://doi.org/10.1007/s41478-020-00248-8
  • Basha, S. S., Shahzad, N. ,Vetro, C., Best proximity point theorems for proximal cyclic contractions, Journal of Fixed Point Theory and Applications, 19(4) (2017), 2647-2661. https://doi.org/10.1007/s11784-017-0447-8
  • Banach, S., Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fundamenta Mathematicae, 3(1) (1922), 133-181.
  • Czerwik, S., Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena, 46(2) (1998), 263-276.
  • Cevik, C., Altun, I., Sahin, H., Ozeken, C. C., Some fixed point theorems for contractive mapping in ordered vector metric spaces, J. Non. Sci. Ap., 10 (2017), 1424-1432. http://dx.doi.org/10.22436/jnsa.010.04.12
  • Eldred, A. A., Veeramani, P., Existence and convergence of best proximity points, Journal of Mathematical Analysis and Applications, 323(2) (2006), 1001-1006. https://doi.org/10.1016/j.jmaa.2005.10.081
  • Espínola, R., Kosuru, G. S. R., Veeramani, P., Pythagorean property and best-proximity point theorems, Journal of Optimization Theory and Applications, 164(2), (2015), 534-550. https://doi.org/10.1007/s10957-014-0583-x
  • Felhi, A., Aydi, H., Best proximity points and stability results for controlled proximal contractive set valued mappings, Fixed Point Theory and Applications, 2016(1), (2016), 22. https://doi.org/10.1186/s13663-016-0510-y
  • Kadelburg, Z., Radenovic, S., Fixed point and tripled fixed point theorems under Pata-Type conditions in ordered metric spaces, International Journal of Analysis and Applications, 6(1) (2014), 113-122.
  • Karpagam, S., Agrawal, S., Best proximity points for cyclic contractions, (preprint)
  • Kirk, W. A., Srinivasan, P.S., Veeramani, P., Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory, 4 (2003) 79-89.
  • Reich, S., Fixed points of contractive functions, Boll. Unione Mat. Ital.,5 (1972), 26-42.
  • Ozeken, C. C., Cevik, C., Unbounded vectorial Cauchy completion of vector metric spaces, Gazi Uni. J. of Sci., 33-3 (2020), 761-765. https://doi.org/10.35378/gujs.604784
  • Sahin, H., Best proximity point theory on vector metric spaces, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(1) (2021), 130-142. https://doi.org/10.31801/cfsuasmas.780723
  • Sahin, H., Aslantas, M., Altun, I., Feng-Liu type approach to best proximity point results for multivalued mappings, Journal of Fixed Point Theory and Applications, 22(1) (2020),11. https://doi.org/10.1007/s11784-019-0740-9
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Mustafa Aslantaş 0000-0003-4338-3518

Publication Date June 30, 2021
Submission Date August 14, 2020
Acceptance Date January 30, 2021
Published in Issue Year 2021

Cite

APA Aslantaş, M. (2021). Best proximity point theorems for proximal b-cyclic contractions on b-metric spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(1), 483-496. https://doi.org/10.31801/cfsuasmas.780729
AMA Aslantaş M. Best proximity point theorems for proximal b-cyclic contractions on b-metric spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2021;70(1):483-496. doi:10.31801/cfsuasmas.780729
Chicago Aslantaş, Mustafa. “Best Proximity Point Theorems for Proximal B-Cyclic Contractions on B-Metric Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 1 (June 2021): 483-96. https://doi.org/10.31801/cfsuasmas.780729.
EndNote Aslantaş M (June 1, 2021) Best proximity point theorems for proximal b-cyclic contractions on b-metric spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 1 483–496.
IEEE M. Aslantaş, “Best proximity point theorems for proximal b-cyclic contractions on b-metric spaces”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 1, pp. 483–496, 2021, doi: 10.31801/cfsuasmas.780729.
ISNAD Aslantaş, Mustafa. “Best Proximity Point Theorems for Proximal B-Cyclic Contractions on B-Metric Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/1 (June 2021), 483-496. https://doi.org/10.31801/cfsuasmas.780729.
JAMA Aslantaş M. Best proximity point theorems for proximal b-cyclic contractions on b-metric spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:483–496.
MLA Aslantaş, Mustafa. “Best Proximity Point Theorems for Proximal B-Cyclic Contractions on B-Metric Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 1, 2021, pp. 483-96, doi:10.31801/cfsuasmas.780729.
Vancouver Aslantaş M. Best proximity point theorems for proximal b-cyclic contractions on b-metric spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(1):483-96.

Cited By

















Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.