Year 2021,
, 541 - 554, 30.06.2021
Kenan Bozkurt
Fırat Özsaraç
,
Ali Aral
References
- Adell, J.A., De La Cal, J., San Miguel, M., On the property of monotonic convergence for multivariate Bernstein-type operators, J. Approx. Theory., 80 (1995), 132137. https://doi.org/10.1006/jath.1995.1008
- Aral, A., Acar, T., Ozsarac, F., Differentiated Bernstein type operators, Dolomites Research Notes on Approximation., 13 (1) (2020), 47-54. https://doi.org/10.14658/PUPJ-DRNA-2020-1-6
- Aral, A., C´ardenas-Morales, D., Garrancho, P., Bernstein-type operators that reproduce exponential functions, J. of Math. Ineq., 12 (3) (2018), 861-872. https://doi.org/10.7153/jmi-2018-12-64
- Aral, A., Limmam, M. L., Ozsarac, F., Approximation properties of Szász-Mirakyan-Kantorovich type operators, Math. Meth. Appl. Sci., 42 (16) (2018), 5233-5240. https://doi.org/10.1002/mma.5280
- Bodur, M., Yilmaz, O. G., Aral, A., Approximation by Baskakov-Szász-Stancu operators preserving exponential function, Constr. Math. Anal., 1 (1) (2018), 18. https://doi.org/10.33205/cma.450708
- Blaga, P., Catinaş, T., Coman, Gh., Bernstein-type operators on triangle with one curved side. Mediterr. J. Math., 9 (4) (2012), 843855. https://doi.org/10.1007/s00009-011-0156-2
- Blaga, P., Catinaş, T., Coman, Gh., Bernstein-type operators on a triangle with all curved sides, Applied Mathematics and Computation., 218 (2011), 30723082. https://doi.org/10.1016/j.amc.2011.08.027
- Cárdenas-Morales, D., Garrancho, P., Munoz-Delgado, F.J., Shape preserving approximation by Bernstein-type operators which fix polynomials, Appl. Math. Comput., 182 (2) (2006), 16151622. https://doi.org/10.1016/j.amc.2006.05.046
- Cárdenas-Morales, D., Munoz-Delgado, F.J., Improving certain Bernstein-type approximation processes, Math. and Comp. in Simulation., 77 (2008), 170-178. https://doi.org/10.
1016/j.matcom.2007.08.009
- Censor, E., Quantitative results for positive linear approximation operators, J. Approx. Theory., 4 (1971), 442450. https://doi.org/10.1016/0021-9045(71)90009-8
- Ditzian, Z., Inverse theorems for multidimensional Bernstein operators, Pac. J. Math., 121 (2) (1986), 293319. https://doi.org/10.2140/pjm.1986.121.293
- Karlin, S., Studden, W.J., Tchebycheff Systems: with Applications in Analysis and Statistics, Interscience, New York, 1966. https://doi.org/10.1137/1009050
- King, J.P., Positive linear operators which preserve x^2, Acta Math. Hungar., 99 (3) (2003), 203208. https://doi.org/10.1023/A:1024571126455
- Ozsarac, F., Acar, T., Reconstruction of Baskakov operators preserving some exponential functions, Math. Meth. Appl. Sci., 42 (16) (2018), 5124-5132. https://doi.org/10.1002/
mma.5228
- Ozsarac, F., Aral, A., Karsli, H., On BernsteinChlodowsky type operators preserving exponential functions, Mathematical Analysis I: Approximation Theory-Springer., (2018), 121-138. https://doi.org/10.1007/978-981-15-1153-0_11
Bivariate Bernstein polynomials that reproduce exponential functions
Year 2021,
, 541 - 554, 30.06.2021
Kenan Bozkurt
Fırat Özsaraç
,
Ali Aral
Abstract
In this paper, we construct Bernstein type operators that reproduce exponential functions on simplex with one moved curved side. The operator interpolates the function at the corner points of the simplex. Used function sequence with parameters α and β not only are gained more modeling flexibility to operator but also satisfied to preserve some exponential functions. We examine the convergence properties of the new approximation processes. Later, we also state its shape preserving properties by considering classical convexity. Finally, a Voronovskaya-type theorem is given and our results are supported by graphics.
References
- Adell, J.A., De La Cal, J., San Miguel, M., On the property of monotonic convergence for multivariate Bernstein-type operators, J. Approx. Theory., 80 (1995), 132137. https://doi.org/10.1006/jath.1995.1008
- Aral, A., Acar, T., Ozsarac, F., Differentiated Bernstein type operators, Dolomites Research Notes on Approximation., 13 (1) (2020), 47-54. https://doi.org/10.14658/PUPJ-DRNA-2020-1-6
- Aral, A., C´ardenas-Morales, D., Garrancho, P., Bernstein-type operators that reproduce exponential functions, J. of Math. Ineq., 12 (3) (2018), 861-872. https://doi.org/10.7153/jmi-2018-12-64
- Aral, A., Limmam, M. L., Ozsarac, F., Approximation properties of Szász-Mirakyan-Kantorovich type operators, Math. Meth. Appl. Sci., 42 (16) (2018), 5233-5240. https://doi.org/10.1002/mma.5280
- Bodur, M., Yilmaz, O. G., Aral, A., Approximation by Baskakov-Szász-Stancu operators preserving exponential function, Constr. Math. Anal., 1 (1) (2018), 18. https://doi.org/10.33205/cma.450708
- Blaga, P., Catinaş, T., Coman, Gh., Bernstein-type operators on triangle with one curved side. Mediterr. J. Math., 9 (4) (2012), 843855. https://doi.org/10.1007/s00009-011-0156-2
- Blaga, P., Catinaş, T., Coman, Gh., Bernstein-type operators on a triangle with all curved sides, Applied Mathematics and Computation., 218 (2011), 30723082. https://doi.org/10.1016/j.amc.2011.08.027
- Cárdenas-Morales, D., Garrancho, P., Munoz-Delgado, F.J., Shape preserving approximation by Bernstein-type operators which fix polynomials, Appl. Math. Comput., 182 (2) (2006), 16151622. https://doi.org/10.1016/j.amc.2006.05.046
- Cárdenas-Morales, D., Munoz-Delgado, F.J., Improving certain Bernstein-type approximation processes, Math. and Comp. in Simulation., 77 (2008), 170-178. https://doi.org/10.
1016/j.matcom.2007.08.009
- Censor, E., Quantitative results for positive linear approximation operators, J. Approx. Theory., 4 (1971), 442450. https://doi.org/10.1016/0021-9045(71)90009-8
- Ditzian, Z., Inverse theorems for multidimensional Bernstein operators, Pac. J. Math., 121 (2) (1986), 293319. https://doi.org/10.2140/pjm.1986.121.293
- Karlin, S., Studden, W.J., Tchebycheff Systems: with Applications in Analysis and Statistics, Interscience, New York, 1966. https://doi.org/10.1137/1009050
- King, J.P., Positive linear operators which preserve x^2, Acta Math. Hungar., 99 (3) (2003), 203208. https://doi.org/10.1023/A:1024571126455
- Ozsarac, F., Acar, T., Reconstruction of Baskakov operators preserving some exponential functions, Math. Meth. Appl. Sci., 42 (16) (2018), 5124-5132. https://doi.org/10.1002/
mma.5228
- Ozsarac, F., Aral, A., Karsli, H., On BernsteinChlodowsky type operators preserving exponential functions, Mathematical Analysis I: Approximation Theory-Springer., (2018), 121-138. https://doi.org/10.1007/978-981-15-1153-0_11