Research Article
BibTex RIS Cite

An approach for designing a surface pencil through a given geodesic curve

Year 2021, , 555 - 568, 30.06.2021
https://doi.org/10.31801/cfsuasmas.798620

Abstract

In the present paper, we propose a new method to construct a surface interpolating a given curve as the geodesic curve of it. Also, we analyze the conditions when the resulting surface is a ruled surface. In addition, developablity along the common geodesic of the members of surface family are discussed. Finally, we illustrate this method by presenting some examples.

References

  • Bechmann, D., Gerber, D., Arbitrary shaped deformation with dogme, Visual Comput., 19 (2-3) (2003), 175-186.
  • Peng, Q., Jin, X., Feng, J., Arc-length-based axial deformation and length preserving deformation, In Proceedings of Computer Animation., (1997), 86-92.
  • Lazarus, F., Coquillart, S., Jancène, P., Interactive axial deformations, In Modeling in Computer Graphics., Springer, Verlag, 1993.
  • Lazarus, F., Verroust, A., Feature-based shape transformation for polyhedral object, In Proceedings of the 5th Eurographics Workshop on Animation and Simulation., (1994), 1-14.
  • Lazarus, F., Coquillart, S., Jancène, P., Axial deformation: an intuitive technique, Comput. Aid. Des., 26 (8) (1994), 607-613.
  • Llamas, I., Powell, A., Rossignac, J., Shaw, C.D., Bender : A virtual ribbon for deforming 3d shapes in biomedical and styling applications, In Proceedings of Symposium on Solid and Physical Modeling., (2005), 89-99.
  • Bloomenthal,M., Riesenfeld, R.F., Approximation of sweep surfaces by tensor product NURBS, In SPIE Proceedings Curves and Surfaces in Computer Vision and Graphics., 2 (1610) (1991), 132-154.
  • Pottmann, H., Wagner, M., Contributions to motion based surface design, Int. J. Shape Model., 4 (3&4 ) (1998), 183-196.
  • Siltanen, P., Woodward, C., Normal orientation methods for 3D o¤set curves, sweep surfaces, skinning, In Proceedings of Eurographics., (1992), 449-457.
  • Wang,W., Joe, B., Robust computation of rotation minimizing frame for sweep surface modeling, Comput. Aid. Des., 29 (1997), 379-391.
  • Shani, U., Ballard, D.H., Splines as embeddings for generalized cylinders. Comput. Vision Graph. Image Proces., 27 (1984), 129-156.
  • Bloomenthal, J., Modeling the mighty maple, In Proceedings of SIGGRAPH., (1985), 305-311.
  • Bronsvoort, W.F., Klok, F., Ray tracing generalized cylinders, ACM Trans. Graph.,4 (4) (1985) , 291-302.
  • Semwal, S.K., Hallauer, J., Biomedical modeling: implementing line-of-action algorithm for human muscles and bones using generalized cylinders, Comput. Graph., 18 (1) (1994), 105-112.
  • Banks, D.C., Singer, B.A., A predictor-corrector technique for visualizing unsteady flows, IEEE Trans on Visualiz. Comput. Graph., 1 (2) (1995), 151-163.
  • Hanson, A.J., Ma, H., A quaternion approach to streamline visualization, IEEE Trans Visualiz. Comput. Graph., 1 (2) (1995), 164-174.
  • Hanson, A., Constrained optimal framing of curves and surfaces using quaternion gauss map. In Proceedings of Visulization., (1998), 375-382.
  • Barzel, R., Faking dynamics of ropes and springs, IEEE Comput. Graph. Appl., 17 (3) (1997), 31-39.
  • Jüttler, B., Rational approximation of rotation minimizing frames using Pythagoreanhodograph cubics, J. Geom. Graph., 3 (1999), 141-159.
  • Bishop, R. L., There is more than one way to frame a curve, Ame. Math. Mon., 82 (1975), 246-251.
  • O'Neill, B., Elementary Differential Geometry, Academic Press Inc., New York, 1966.
  • Farouki, R.T., Sakkalis, T., Rational rotation-minimizing frames on polynomial space curves of arbitrary degree, J. Symbolic Comput., 45 (2010), 844-856 .
  • Brond, R., Jeulin, D., Gateau, P., Jarrin, J., Serpe, G., Estimation of the transport properties of polymer composites by geodesic propagation, J. Microsc., 176 (1994), 167-177.
  • Bryson, S.,Virtual spacetime: an environment for the visualization of curved spacetimesvia geodesic flows, Technical Report, NASA NAS., Number RNR-92 (1992).
  • Grundig, L., Ekert, L., Moncrieff, E., Geodesic and semi-geodesic line algorithms for cutting pattern generation of architectural textile structures, In: Lan TT, editor. Proceedings of the Asia-Pacific Conference on Shell and Spatial Structures, Beijing, 1996.
  • Haw, R.J., An application of geodesic curves to sail design, Comput. Graphics Forum., 4(2) (1985), 137-139.
  • Haw, R.J., Munchmeyer, R.C., Geodesic curves on patched polynomial surfaces, Comput. Graphics Forum., 2 (4) (1983), 225-232.
  • Wang, G.J., Tang, K., Tai, C.L., Parametric representation of a surface pencil with a common spatial geodesic. Comput. Aided Des., 36 (5) (2004), 447-459.
  • Deng, B., Special Curve Patterns for Freeform Architecture Ph.D. thesis, Eingereicht an der Technischen Universitat Wien, Fakultat für Mathematik und Geoinformation von, 2011.
  • Kasap, E., Akyıldız, F.T., Orbay, K., A generalization of surfaces family with common spatial geodesic, Appl. Math. Comput., 201 (2008), 781-789.
  • Kasap, E., Akyildiz, F.T., Surfaces with common geodesic in Minkowski 3-space, Appl. Math. Comput., 177 (2006), 260-270.
  • Saffak, G., Kasap, E., Family of surface with a common null geodesic, International Journal of Physical Sciences., 4 (8) (2009), 428-433.
  • Atalay, G.¸S., Kasap, E., Surfaces family with common null asymptotic, Appl. Math. Comput., doi: 10.1016/J.amc.2015.03.067.
  • Bayram, E., Güler, F., Kasap, E., Parametric representation of a surface pencil with a common asymptotic curve, Comput. Aided Des., 44 (2012), 637-643.
  • Bayram, E., Bilici, M., Surfaces family with a common involute asymptotic curve, International Journal of Geometric Methods in Modern Physics., 13(5) (2016).
  • Atalay, G.S., Surfaces family with a common Mannheim geodesic curve, Journal of Applied Mathematics and Computation., 2 (4) (2018), 155-165.
  • Atalay, G.S., Surfaces family with a common Mannheim asymptotic curve, Journal of Applied Mathematics and Computation., 2 (4) (2018), 143-154.
  • Ayvacı, K.H., Ortak Mannheim-B ·Isogeodezikli ve ·Isoasimptotikli Yüzey Ailesi, Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 2019.
  • Ayvacı, K.H., Atalay, G.S., Surface Family With A Common Bertrand-B Isogeodesic Curve, Journal of the Institute of Science and Technology., 10 (3) (2020), 1975-1983.
  • Do Carmo, M.P., Di¤erential geometry of curves and surfaces, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1976.
  • Klok, F., Two moving coordinate frames along a 3D trajectory, Comput. Aided Geom. Design., 3 (1986), 217-229.
  • Han, C.Y., Nonexistence of rational rotation-minimizing frames on cubic curves, Comput. Aided Geom. Design., 25 (2008), 298-304.
  • Li ,C.Y., Wang, R.H., Zhu, C.G., An approach for designing a developable surface through a given line of curvature, Comput. Aided Des., 45 (2013), 621-627.
Year 2021, , 555 - 568, 30.06.2021
https://doi.org/10.31801/cfsuasmas.798620

Abstract

References

  • Bechmann, D., Gerber, D., Arbitrary shaped deformation with dogme, Visual Comput., 19 (2-3) (2003), 175-186.
  • Peng, Q., Jin, X., Feng, J., Arc-length-based axial deformation and length preserving deformation, In Proceedings of Computer Animation., (1997), 86-92.
  • Lazarus, F., Coquillart, S., Jancène, P., Interactive axial deformations, In Modeling in Computer Graphics., Springer, Verlag, 1993.
  • Lazarus, F., Verroust, A., Feature-based shape transformation for polyhedral object, In Proceedings of the 5th Eurographics Workshop on Animation and Simulation., (1994), 1-14.
  • Lazarus, F., Coquillart, S., Jancène, P., Axial deformation: an intuitive technique, Comput. Aid. Des., 26 (8) (1994), 607-613.
  • Llamas, I., Powell, A., Rossignac, J., Shaw, C.D., Bender : A virtual ribbon for deforming 3d shapes in biomedical and styling applications, In Proceedings of Symposium on Solid and Physical Modeling., (2005), 89-99.
  • Bloomenthal,M., Riesenfeld, R.F., Approximation of sweep surfaces by tensor product NURBS, In SPIE Proceedings Curves and Surfaces in Computer Vision and Graphics., 2 (1610) (1991), 132-154.
  • Pottmann, H., Wagner, M., Contributions to motion based surface design, Int. J. Shape Model., 4 (3&4 ) (1998), 183-196.
  • Siltanen, P., Woodward, C., Normal orientation methods for 3D o¤set curves, sweep surfaces, skinning, In Proceedings of Eurographics., (1992), 449-457.
  • Wang,W., Joe, B., Robust computation of rotation minimizing frame for sweep surface modeling, Comput. Aid. Des., 29 (1997), 379-391.
  • Shani, U., Ballard, D.H., Splines as embeddings for generalized cylinders. Comput. Vision Graph. Image Proces., 27 (1984), 129-156.
  • Bloomenthal, J., Modeling the mighty maple, In Proceedings of SIGGRAPH., (1985), 305-311.
  • Bronsvoort, W.F., Klok, F., Ray tracing generalized cylinders, ACM Trans. Graph.,4 (4) (1985) , 291-302.
  • Semwal, S.K., Hallauer, J., Biomedical modeling: implementing line-of-action algorithm for human muscles and bones using generalized cylinders, Comput. Graph., 18 (1) (1994), 105-112.
  • Banks, D.C., Singer, B.A., A predictor-corrector technique for visualizing unsteady flows, IEEE Trans on Visualiz. Comput. Graph., 1 (2) (1995), 151-163.
  • Hanson, A.J., Ma, H., A quaternion approach to streamline visualization, IEEE Trans Visualiz. Comput. Graph., 1 (2) (1995), 164-174.
  • Hanson, A., Constrained optimal framing of curves and surfaces using quaternion gauss map. In Proceedings of Visulization., (1998), 375-382.
  • Barzel, R., Faking dynamics of ropes and springs, IEEE Comput. Graph. Appl., 17 (3) (1997), 31-39.
  • Jüttler, B., Rational approximation of rotation minimizing frames using Pythagoreanhodograph cubics, J. Geom. Graph., 3 (1999), 141-159.
  • Bishop, R. L., There is more than one way to frame a curve, Ame. Math. Mon., 82 (1975), 246-251.
  • O'Neill, B., Elementary Differential Geometry, Academic Press Inc., New York, 1966.
  • Farouki, R.T., Sakkalis, T., Rational rotation-minimizing frames on polynomial space curves of arbitrary degree, J. Symbolic Comput., 45 (2010), 844-856 .
  • Brond, R., Jeulin, D., Gateau, P., Jarrin, J., Serpe, G., Estimation of the transport properties of polymer composites by geodesic propagation, J. Microsc., 176 (1994), 167-177.
  • Bryson, S.,Virtual spacetime: an environment for the visualization of curved spacetimesvia geodesic flows, Technical Report, NASA NAS., Number RNR-92 (1992).
  • Grundig, L., Ekert, L., Moncrieff, E., Geodesic and semi-geodesic line algorithms for cutting pattern generation of architectural textile structures, In: Lan TT, editor. Proceedings of the Asia-Pacific Conference on Shell and Spatial Structures, Beijing, 1996.
  • Haw, R.J., An application of geodesic curves to sail design, Comput. Graphics Forum., 4(2) (1985), 137-139.
  • Haw, R.J., Munchmeyer, R.C., Geodesic curves on patched polynomial surfaces, Comput. Graphics Forum., 2 (4) (1983), 225-232.
  • Wang, G.J., Tang, K., Tai, C.L., Parametric representation of a surface pencil with a common spatial geodesic. Comput. Aided Des., 36 (5) (2004), 447-459.
  • Deng, B., Special Curve Patterns for Freeform Architecture Ph.D. thesis, Eingereicht an der Technischen Universitat Wien, Fakultat für Mathematik und Geoinformation von, 2011.
  • Kasap, E., Akyıldız, F.T., Orbay, K., A generalization of surfaces family with common spatial geodesic, Appl. Math. Comput., 201 (2008), 781-789.
  • Kasap, E., Akyildiz, F.T., Surfaces with common geodesic in Minkowski 3-space, Appl. Math. Comput., 177 (2006), 260-270.
  • Saffak, G., Kasap, E., Family of surface with a common null geodesic, International Journal of Physical Sciences., 4 (8) (2009), 428-433.
  • Atalay, G.¸S., Kasap, E., Surfaces family with common null asymptotic, Appl. Math. Comput., doi: 10.1016/J.amc.2015.03.067.
  • Bayram, E., Güler, F., Kasap, E., Parametric representation of a surface pencil with a common asymptotic curve, Comput. Aided Des., 44 (2012), 637-643.
  • Bayram, E., Bilici, M., Surfaces family with a common involute asymptotic curve, International Journal of Geometric Methods in Modern Physics., 13(5) (2016).
  • Atalay, G.S., Surfaces family with a common Mannheim geodesic curve, Journal of Applied Mathematics and Computation., 2 (4) (2018), 155-165.
  • Atalay, G.S., Surfaces family with a common Mannheim asymptotic curve, Journal of Applied Mathematics and Computation., 2 (4) (2018), 143-154.
  • Ayvacı, K.H., Ortak Mannheim-B ·Isogeodezikli ve ·Isoasimptotikli Yüzey Ailesi, Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 2019.
  • Ayvacı, K.H., Atalay, G.S., Surface Family With A Common Bertrand-B Isogeodesic Curve, Journal of the Institute of Science and Technology., 10 (3) (2020), 1975-1983.
  • Do Carmo, M.P., Di¤erential geometry of curves and surfaces, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1976.
  • Klok, F., Two moving coordinate frames along a 3D trajectory, Comput. Aided Geom. Design., 3 (1986), 217-229.
  • Han, C.Y., Nonexistence of rational rotation-minimizing frames on cubic curves, Comput. Aided Geom. Design., 25 (2008), 298-304.
  • Li ,C.Y., Wang, R.H., Zhu, C.G., An approach for designing a developable surface through a given line of curvature, Comput. Aided Des., 45 (2013), 621-627.
There are 43 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Gülnur Şaffak Atalay 0000-0003-4168-1642

Fatma Güler 0000-0002-5107-8436

Ergin Bayram 0000-0003-2633-0991

Emin Kasap 0000-0002-5017-5170

Publication Date June 30, 2021
Submission Date September 22, 2020
Acceptance Date February 10, 2021
Published in Issue Year 2021

Cite

APA Şaffak Atalay, G., Güler, F., Bayram, E., Kasap, E. (2021). An approach for designing a surface pencil through a given geodesic curve. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(1), 555-568. https://doi.org/10.31801/cfsuasmas.798620
AMA Şaffak Atalay G, Güler F, Bayram E, Kasap E. An approach for designing a surface pencil through a given geodesic curve. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2021;70(1):555-568. doi:10.31801/cfsuasmas.798620
Chicago Şaffak Atalay, Gülnur, Fatma Güler, Ergin Bayram, and Emin Kasap. “An Approach for Designing a Surface Pencil through a Given Geodesic Curve”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 1 (June 2021): 555-68. https://doi.org/10.31801/cfsuasmas.798620.
EndNote Şaffak Atalay G, Güler F, Bayram E, Kasap E (June 1, 2021) An approach for designing a surface pencil through a given geodesic curve. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 1 555–568.
IEEE G. Şaffak Atalay, F. Güler, E. Bayram, and E. Kasap, “An approach for designing a surface pencil through a given geodesic curve”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 1, pp. 555–568, 2021, doi: 10.31801/cfsuasmas.798620.
ISNAD Şaffak Atalay, Gülnur et al. “An Approach for Designing a Surface Pencil through a Given Geodesic Curve”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/1 (June 2021), 555-568. https://doi.org/10.31801/cfsuasmas.798620.
JAMA Şaffak Atalay G, Güler F, Bayram E, Kasap E. An approach for designing a surface pencil through a given geodesic curve. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:555–568.
MLA Şaffak Atalay, Gülnur et al. “An Approach for Designing a Surface Pencil through a Given Geodesic Curve”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 1, 2021, pp. 555-68, doi:10.31801/cfsuasmas.798620.
Vancouver Şaffak Atalay G, Güler F, Bayram E, Kasap E. An approach for designing a surface pencil through a given geodesic curve. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(1):555-68.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.