Deferred Nörlund statistical relative uniform convergence and Korovkin-type approximation theorem
Year 2021,
, 279 - 289, 30.06.2021
Kamil Demirci
,
Fadime Dirik
,
Sevda Yıldız
Abstract
In this paper, we define the concept of statistical relative uniform convergence of the deferred Nörlund mean and we prove a general Korovkin-type approximation theorem by using this convergence method. As an application, we use classical Bernstein polynomials for defining an operator that satisfies our new approximation theorem but does not satisfy the theorem given before. Additionally, we estimate the rate of convergence of approximating positive linear operators by means of the modulus of continuity.
Supporting Institution
Sinop University
Project Number
FEF-1901-18-25.
Thanks
This research was supported by Sinop University Scientific Research Coordination Unit, Project
N. FEF-1901-18-25.
References
- Agnew, R.P., On deferred Cesàro means, Ann. Math., 33 (1932), 413-421. https://doi.org/10.2307/1968524
- Altomare, F. and Campiti, M., Korovkin-Type Approximation Theory and Its Applications, de Gruyter Stud. Math. 17, Walter de Gruyter, Berlin, 1994. https://doi.org/10.1515/9783110884586
- Anastassiou G. A. and Duman, O., Towards Intelligent Modeling: Statistical Approximation Theory, Intelligent Systems Reference Library, 14, Springer-Verlag, Berlin Heidelberg, 2011. https://doi.org/10.1007/978-3-642-19826-7
- Bardaro, C., Boccuto, A., Demirci, K., Mantellini, I., Orhan, S., Triangular A-statistical approximation by double sequences of positive linear operators, Results. Math., 68 (2015),
271-291. https://doi.org/10.1007/s00025-015-0433-7
- Bardaro, C., Boccuto, A., Demirci, K., Mantellini, I., Orhan, S., Korovkin-type theorems for modular Ψ- A- statistical convergence, J. Funct. Spaces, Article ID 160401 (2015), p. 11. https://doi.org/10.1155/2015/160401
- Bardaro, C. and Mantellini, I., Korovkin's theorem in modular spaces, Commentationes Math., 47 (2007), 239-253. https://doi.org/10.14708/cm.v47i2.5253
- Demirci, K. and Orhan, S., Statistically relatively uniform convergence of positive linear operators, Results. Math., 69 (2016), 359-367. https://doi.org/10.1007/s00025-015-0484-9
- Dirik, F. and Demirci, K., Korovkin type approximation theorem for functions of two variables in statistical sense, Turk. J. Math., 34 (2010), 73-83. https://doi.org/10.3906/mat-0802-21
- Dirik, F. and Demirci, K., Approximation in Statistical Sense to n-variate B-Continuous Functions by Positive Linear Operators, Math. Slovaca, 60 (2010), 877-886. https://doi.org/10.2478/s12175-010-0054-2
- Duman, O. and Orhan, C., μ-statistically convergent function sequences, Czechoslovak Math. J., 54 (129) (2004), 413-422. https://doi.org/10.1023/B:CMAJ.0000042380.31622.39
- Fast, H., Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244. https://doi.org/10.4064/cm-2-3-4-241-244
- Gadjiev, A.D. and Orhan, C., Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 32 (2002), 129-138. https://www.jstor.org/stable/44238888
- Karakus, S., Demirci, K. and Duman, O., Equi-statistical convergence of positive linear operators, J. Math. Anal. Appl., 339 (2008), 1065-1072. https://doi.org/10.1016/j.jmaa.2007.07.050
- Korovkin, P.P., Linear Operators and Approximation Theory, Hindustan Publ. Co., Delhi, 1960.
- Niven, I. and Zuckerman, H.S., An Introduction to the Theory of Numbers, John Wiley and Sons, Fourt Ed., New York, 1980.
- Söylemez, D. and Ünver, M., Korovkin type theorems for Cheney-Sharma operators via summability methods, Results. Math., 72(3) (2017) 1601-1612. https://doi.org/10.1007/s00025-017-0733-1
- Steinhaus, H., Sur la convergence ordinaire et la convergence asymtotique, Colloq. Math., 2 (1951), 73-74.
- Srivastava, H. M. Bidu Bhusan Jena, Susanta Kumar Paikray, Misra, U. K., Generalized equi-statistical convergence of the deferred Nörlund summability and its applications to associated approximation theorems, RACSAM, 112 (2018), 1487-1501. https://doi.org/10.1007/s13398-017-0442-3
- Tas, E. and Yurdakadim, T., Approximation by positive linear operators in modular spaces by power series method, Positivity, 21(4) (2017) 1293-1306. https://doi.org/10.1007/s11117-017-0467-z
- Yılmaz, B., Demirci, K., Orhan, S., Relative Modular Convergence of Positive Linear Operators, Positivity, 20 (2016), 565-577. https://doi.org/10.1007/s11117-015-0372-2
Year 2021,
, 279 - 289, 30.06.2021
Kamil Demirci
,
Fadime Dirik
,
Sevda Yıldız
Project Number
FEF-1901-18-25.
References
- Agnew, R.P., On deferred Cesàro means, Ann. Math., 33 (1932), 413-421. https://doi.org/10.2307/1968524
- Altomare, F. and Campiti, M., Korovkin-Type Approximation Theory and Its Applications, de Gruyter Stud. Math. 17, Walter de Gruyter, Berlin, 1994. https://doi.org/10.1515/9783110884586
- Anastassiou G. A. and Duman, O., Towards Intelligent Modeling: Statistical Approximation Theory, Intelligent Systems Reference Library, 14, Springer-Verlag, Berlin Heidelberg, 2011. https://doi.org/10.1007/978-3-642-19826-7
- Bardaro, C., Boccuto, A., Demirci, K., Mantellini, I., Orhan, S., Triangular A-statistical approximation by double sequences of positive linear operators, Results. Math., 68 (2015),
271-291. https://doi.org/10.1007/s00025-015-0433-7
- Bardaro, C., Boccuto, A., Demirci, K., Mantellini, I., Orhan, S., Korovkin-type theorems for modular Ψ- A- statistical convergence, J. Funct. Spaces, Article ID 160401 (2015), p. 11. https://doi.org/10.1155/2015/160401
- Bardaro, C. and Mantellini, I., Korovkin's theorem in modular spaces, Commentationes Math., 47 (2007), 239-253. https://doi.org/10.14708/cm.v47i2.5253
- Demirci, K. and Orhan, S., Statistically relatively uniform convergence of positive linear operators, Results. Math., 69 (2016), 359-367. https://doi.org/10.1007/s00025-015-0484-9
- Dirik, F. and Demirci, K., Korovkin type approximation theorem for functions of two variables in statistical sense, Turk. J. Math., 34 (2010), 73-83. https://doi.org/10.3906/mat-0802-21
- Dirik, F. and Demirci, K., Approximation in Statistical Sense to n-variate B-Continuous Functions by Positive Linear Operators, Math. Slovaca, 60 (2010), 877-886. https://doi.org/10.2478/s12175-010-0054-2
- Duman, O. and Orhan, C., μ-statistically convergent function sequences, Czechoslovak Math. J., 54 (129) (2004), 413-422. https://doi.org/10.1023/B:CMAJ.0000042380.31622.39
- Fast, H., Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244. https://doi.org/10.4064/cm-2-3-4-241-244
- Gadjiev, A.D. and Orhan, C., Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 32 (2002), 129-138. https://www.jstor.org/stable/44238888
- Karakus, S., Demirci, K. and Duman, O., Equi-statistical convergence of positive linear operators, J. Math. Anal. Appl., 339 (2008), 1065-1072. https://doi.org/10.1016/j.jmaa.2007.07.050
- Korovkin, P.P., Linear Operators and Approximation Theory, Hindustan Publ. Co., Delhi, 1960.
- Niven, I. and Zuckerman, H.S., An Introduction to the Theory of Numbers, John Wiley and Sons, Fourt Ed., New York, 1980.
- Söylemez, D. and Ünver, M., Korovkin type theorems for Cheney-Sharma operators via summability methods, Results. Math., 72(3) (2017) 1601-1612. https://doi.org/10.1007/s00025-017-0733-1
- Steinhaus, H., Sur la convergence ordinaire et la convergence asymtotique, Colloq. Math., 2 (1951), 73-74.
- Srivastava, H. M. Bidu Bhusan Jena, Susanta Kumar Paikray, Misra, U. K., Generalized equi-statistical convergence of the deferred Nörlund summability and its applications to associated approximation theorems, RACSAM, 112 (2018), 1487-1501. https://doi.org/10.1007/s13398-017-0442-3
- Tas, E. and Yurdakadim, T., Approximation by positive linear operators in modular spaces by power series method, Positivity, 21(4) (2017) 1293-1306. https://doi.org/10.1007/s11117-017-0467-z
- Yılmaz, B., Demirci, K., Orhan, S., Relative Modular Convergence of Positive Linear Operators, Positivity, 20 (2016), 565-577. https://doi.org/10.1007/s11117-015-0372-2