Research Article
BibTex RIS Cite
Year 2021, , 858 - 870, 31.12.2021
https://doi.org/10.31801/cfsuasmas.835272

Abstract

References

  • Akgul, A., A certain subclass of meromorphic functions with positive coefficients associated with an integral operator, Honam Math. J., 39(3) (2017), 331-347. https://doi.org/10.1016/j.mcm.2010.12.051
  • Akgul, A., A new subclass of meromorphic functions with positive and fixed second coefficients defined by the Rapid-Operator, Commun. Fac. Sci. Univ. Ank. Series-A1, 66(2) (2017), 1-13. DOI: 10.1501/Commua10000000796
  • Aqlan, E., Jhangiri, J. M., Kulkarni, S. R., Class of k-uniformly convex and starlike functions, Tamkang, J. Math., 35 (2004), 261-266. https://doi.org/10.5556/j.tkjm.35.2004.207
  • Aydogan, S. M., Sakar, F. M., Radius of starlikeness of p-valent lambda fractional operator, Applied Mathematics and Computation, 357 (2019), 374-378. https://doi.org/10.1016/j.amc.2018.11.067
  • Aydogan, S. M., Sakar, F. M., On convex functions with complex order through bounded boundary rotation, Mathematics in Computer Science, 13 (2019), 433-439. https://doi.org/10.1007/s11786-019-00405-8
  • Jung, I. S., Kim, Y. C., Srivastava, H. M., The Hardy spaces of analytic functions associated with certain one parameter families of integral operators, J. Math. Anal. Appl., 176(1) (1993), 138-147. https://doi.org/10.1006/jmaa.1993.1204
  • Lashin, A. Y., On certain subclasses of meromorphic functions associated with certain integral operators, Comput. Math. Appl., 59(1) (2010), 524-531. https://doi.org/10.1016/j.camwa.2009.06.015
  • Miller, J. E., Convex meromorphic mapping and related functions, Proc. Amer. Math. Soc., 25 (1970), 220ñ228. https://doi.org/10.1090/S0002-9939-1970-0259098-7
  • Pommerenke, C., On meromorphic starlike functions, Pacific J. Math., 13 (1963), 221-235. DOI: 10.2140/p jm.1963.13.221
  • Royster, W. C., Meromorphic starlike univalent functions, Trans. Amer. Math. Soc., 107 (1963), 300-308. https://doi.org/10.1090/S0002-9947-1963-0148895-5
  • Sakar, F. M., Estimating coefficients for certain subclasses of meromorphic and bi-univalent functions, J. of Ineq. and Appl., 283 (2018), 8 pages. https://doi.org/10.1186/s13660-018- 1879-4
  • Schild, A., Silverman, H., Convolutions of univalent functions with negative coefficients, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 29 (1975), 99-107.
  • Sivaprasad Kumar, S., Ravichandran, V., Murugusundaramoorthy, G., Classes of meromorphic p-valent parabolic starlike functions with positive coefficients, Aust. J. Math. Anal. Appl., 2(2) (2005), art. 3, 1-9.
  • Venkateswarlu, B., Thirupathi Reddy, P., Rani, N., Certain subclass of meromorphically uniformly convex functions with positive coe¢ cients, Mathematica (Cluj), 61(84) (1) (2019), 85-97. DOI: 10.24193/mathcluj.2019.1.08
  • Venkateswarlu, B., Thirupathi Reddy, P., Rani, N., On new subclass of meromorphically convex functions with positive coefficients, Surveys in Math. and its Appl., 14 (2019), 49-60.
  • Venkateswarlu, B., Thirupathi Reddy, P., Meng, C., Madhuri Shilpa, R., A new subclass of meromorphic functions with positive coefficients defined by Bessel function, Note di Math., 40(1) (2020), 13-25. DOI: 10.1285/i15900932v40n1p1

A new subclass of meromorphic functions defined by Rapid operator

Year 2021, , 858 - 870, 31.12.2021
https://doi.org/10.31801/cfsuasmas.835272

Abstract

We present and investigate a new subclass of meromorphic univalent functions described by the Rapid operator in this study. Coefficient inequalities is discussed, as well as distortion properties, closure theorems, Hadamard product. After this, integral transforms for the class  $\sum^{*}(\vartheta,\varrho,\wp,\theta,\mu)$ are obtained.  Σ∗(ϑ,ϱ,λ,θ,μ).

References

  • Akgul, A., A certain subclass of meromorphic functions with positive coefficients associated with an integral operator, Honam Math. J., 39(3) (2017), 331-347. https://doi.org/10.1016/j.mcm.2010.12.051
  • Akgul, A., A new subclass of meromorphic functions with positive and fixed second coefficients defined by the Rapid-Operator, Commun. Fac. Sci. Univ. Ank. Series-A1, 66(2) (2017), 1-13. DOI: 10.1501/Commua10000000796
  • Aqlan, E., Jhangiri, J. M., Kulkarni, S. R., Class of k-uniformly convex and starlike functions, Tamkang, J. Math., 35 (2004), 261-266. https://doi.org/10.5556/j.tkjm.35.2004.207
  • Aydogan, S. M., Sakar, F. M., Radius of starlikeness of p-valent lambda fractional operator, Applied Mathematics and Computation, 357 (2019), 374-378. https://doi.org/10.1016/j.amc.2018.11.067
  • Aydogan, S. M., Sakar, F. M., On convex functions with complex order through bounded boundary rotation, Mathematics in Computer Science, 13 (2019), 433-439. https://doi.org/10.1007/s11786-019-00405-8
  • Jung, I. S., Kim, Y. C., Srivastava, H. M., The Hardy spaces of analytic functions associated with certain one parameter families of integral operators, J. Math. Anal. Appl., 176(1) (1993), 138-147. https://doi.org/10.1006/jmaa.1993.1204
  • Lashin, A. Y., On certain subclasses of meromorphic functions associated with certain integral operators, Comput. Math. Appl., 59(1) (2010), 524-531. https://doi.org/10.1016/j.camwa.2009.06.015
  • Miller, J. E., Convex meromorphic mapping and related functions, Proc. Amer. Math. Soc., 25 (1970), 220ñ228. https://doi.org/10.1090/S0002-9939-1970-0259098-7
  • Pommerenke, C., On meromorphic starlike functions, Pacific J. Math., 13 (1963), 221-235. DOI: 10.2140/p jm.1963.13.221
  • Royster, W. C., Meromorphic starlike univalent functions, Trans. Amer. Math. Soc., 107 (1963), 300-308. https://doi.org/10.1090/S0002-9947-1963-0148895-5
  • Sakar, F. M., Estimating coefficients for certain subclasses of meromorphic and bi-univalent functions, J. of Ineq. and Appl., 283 (2018), 8 pages. https://doi.org/10.1186/s13660-018- 1879-4
  • Schild, A., Silverman, H., Convolutions of univalent functions with negative coefficients, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 29 (1975), 99-107.
  • Sivaprasad Kumar, S., Ravichandran, V., Murugusundaramoorthy, G., Classes of meromorphic p-valent parabolic starlike functions with positive coefficients, Aust. J. Math. Anal. Appl., 2(2) (2005), art. 3, 1-9.
  • Venkateswarlu, B., Thirupathi Reddy, P., Rani, N., Certain subclass of meromorphically uniformly convex functions with positive coe¢ cients, Mathematica (Cluj), 61(84) (1) (2019), 85-97. DOI: 10.24193/mathcluj.2019.1.08
  • Venkateswarlu, B., Thirupathi Reddy, P., Rani, N., On new subclass of meromorphically convex functions with positive coefficients, Surveys in Math. and its Appl., 14 (2019), 49-60.
  • Venkateswarlu, B., Thirupathi Reddy, P., Meng, C., Madhuri Shilpa, R., A new subclass of meromorphic functions with positive coefficients defined by Bessel function, Note di Math., 40(1) (2020), 13-25. DOI: 10.1285/i15900932v40n1p1
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

B Venkateswarlu 0000-0003-3669-350X

P. Thırupathı Reddy 0000-0002-0034-444X

Sujatha A 0000-0002-2109-3328

Srıdevı Settıpallı 0000-0003-1918-6127

Publication Date December 31, 2021
Submission Date December 3, 2020
Acceptance Date March 7, 2021
Published in Issue Year 2021

Cite

APA Venkateswarlu, B., Thırupathı Reddy, P., A, S., Settıpallı, S. (2021). A new subclass of meromorphic functions defined by Rapid operator. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(2), 858-870. https://doi.org/10.31801/cfsuasmas.835272
AMA Venkateswarlu B, Thırupathı Reddy P, A S, Settıpallı S. A new subclass of meromorphic functions defined by Rapid operator. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2021;70(2):858-870. doi:10.31801/cfsuasmas.835272
Chicago Venkateswarlu, B, P. Thırupathı Reddy, Sujatha A, and Srıdevı Settıpallı. “A New Subclass of Meromorphic Functions Defined by Rapid Operator”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 2 (December 2021): 858-70. https://doi.org/10.31801/cfsuasmas.835272.
EndNote Venkateswarlu B, Thırupathı Reddy P, A S, Settıpallı S (December 1, 2021) A new subclass of meromorphic functions defined by Rapid operator. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 2 858–870.
IEEE B. Venkateswarlu, P. Thırupathı Reddy, S. A, and S. Settıpallı, “A new subclass of meromorphic functions defined by Rapid operator”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 2, pp. 858–870, 2021, doi: 10.31801/cfsuasmas.835272.
ISNAD Venkateswarlu, B et al. “A New Subclass of Meromorphic Functions Defined by Rapid Operator”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/2 (December 2021), 858-870. https://doi.org/10.31801/cfsuasmas.835272.
JAMA Venkateswarlu B, Thırupathı Reddy P, A S, Settıpallı S. A new subclass of meromorphic functions defined by Rapid operator. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:858–870.
MLA Venkateswarlu, B et al. “A New Subclass of Meromorphic Functions Defined by Rapid Operator”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 2, 2021, pp. 858-70, doi:10.31801/cfsuasmas.835272.
Vancouver Venkateswarlu B, Thırupathı Reddy P, A S, Settıpallı S. A new subclass of meromorphic functions defined by Rapid operator. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(2):858-70.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.