Research Article
BibTex RIS Cite
Year 2021, , 1065 - 1072, 31.12.2021
https://doi.org/10.31801/cfsuasmas.901214

Abstract

References

  • Birkhoff, G.D., Dynamical Systems, Math. Soc. Coll. Publ., vol 9, Amer. Math. Soc., Providence RI, 1927. https://doi.org/http://dx.doi.org/10.1090/coll/009
  • Engelking, R., General Topology, Second Edition, Heldermann Verlag, Berlin, 1989. Furstenberg, H., Poincare recurrence and number theory, Bull. of the A. Math. Soc., 5 (3) (1981), 211–234.
  • Furstenberg, H., Recurrence in Ergodic Theory and Combinatorial Number, Princeton University Press, Princeton, New Jersey, 1981.
  • Van der Waerden, B.L., Beweis einer baudetschen vermutung, Nieuw Arch. Wisk., 15 (1927), 212–216.

A variant of the proof of Van der Waerden's theorem by Furstenberg

Year 2021, , 1065 - 1072, 31.12.2021
https://doi.org/10.31801/cfsuasmas.901214

Abstract

Let RR be a commutative ring with identity. In this paper, for a given monotone decreasing positive sequence and an increasing sequence of subsets of RR, we will define a metric on RR using them. Then, we will use this kind of metric to obtain a variant of the proof of Van der Waerden's theorem by Furstenberg [3].

References

  • Birkhoff, G.D., Dynamical Systems, Math. Soc. Coll. Publ., vol 9, Amer. Math. Soc., Providence RI, 1927. https://doi.org/http://dx.doi.org/10.1090/coll/009
  • Engelking, R., General Topology, Second Edition, Heldermann Verlag, Berlin, 1989. Furstenberg, H., Poincare recurrence and number theory, Bull. of the A. Math. Soc., 5 (3) (1981), 211–234.
  • Furstenberg, H., Recurrence in Ergodic Theory and Combinatorial Number, Princeton University Press, Princeton, New Jersey, 1981.
  • Van der Waerden, B.L., Beweis einer baudetschen vermutung, Nieuw Arch. Wisk., 15 (1927), 212–216.
There are 4 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Sadık Eyidoğan 0000-0003-4324-9845

Ali Arslan Özkurt 0000-0001-7631-8435

Publication Date December 31, 2021
Submission Date March 22, 2021
Acceptance Date June 29, 2021
Published in Issue Year 2021

Cite

APA Eyidoğan, S., & Özkurt, A. A. (2021). A variant of the proof of Van der Waerden’s theorem by Furstenberg. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(2), 1065-1072. https://doi.org/10.31801/cfsuasmas.901214
AMA Eyidoğan S, Özkurt AA. A variant of the proof of Van der Waerden’s theorem by Furstenberg. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2021;70(2):1065-1072. doi:10.31801/cfsuasmas.901214
Chicago Eyidoğan, Sadık, and Ali Arslan Özkurt. “A Variant of the Proof of Van Der Waerden’s Theorem by Furstenberg”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 2 (December 2021): 1065-72. https://doi.org/10.31801/cfsuasmas.901214.
EndNote Eyidoğan S, Özkurt AA (December 1, 2021) A variant of the proof of Van der Waerden’s theorem by Furstenberg. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 2 1065–1072.
IEEE S. Eyidoğan and A. A. Özkurt, “A variant of the proof of Van der Waerden’s theorem by Furstenberg”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 2, pp. 1065–1072, 2021, doi: 10.31801/cfsuasmas.901214.
ISNAD Eyidoğan, Sadık - Özkurt, Ali Arslan. “A Variant of the Proof of Van Der Waerden’s Theorem by Furstenberg”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/2 (December 2021), 1065-1072. https://doi.org/10.31801/cfsuasmas.901214.
JAMA Eyidoğan S, Özkurt AA. A variant of the proof of Van der Waerden’s theorem by Furstenberg. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:1065–1072.
MLA Eyidoğan, Sadık and Ali Arslan Özkurt. “A Variant of the Proof of Van Der Waerden’s Theorem by Furstenberg”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 2, 2021, pp. 1065-72, doi:10.31801/cfsuasmas.901214.
Vancouver Eyidoğan S, Özkurt AA. A variant of the proof of Van der Waerden’s theorem by Furstenberg. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(2):1065-72.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.