Research Article
BibTex RIS Cite
Year 2021, , 1085 - 1098, 31.12.2021
https://doi.org/10.31801/cfsuasmas.915412

Abstract

References

  • Bakouch, H. S., Al-Zahrani, B. M., Al-Shomrani, A. A., Marchi, V. A., Louzada, F., An extended Lindley distribution, Journal of the Korean Statistical Society, 41 (2012),75–85. https://doi.org/10.1016/j.jkss.2011.06.002
  • D’Agostino, R., Stephens M. Goodness-of-Fit Techniques, Marcel Dekker, New York, NY, USA, 1986.
  • Ghitany, M., Al-Mutairi, D., Balakrishnan, N., Al-Enezi, L. Power Lindley distribution and associated inference, Computational Statistics Data Analysis, 64 (2013), 20–33. https://doi.org/10.1016/j.csda.2013.02.026
  • Ghitany, M. E., Alqallaf, F., Al-Mutairi, D. K., Husain, H. A. A two-parameter weighted Lindley distribution and its applications to survival data. Mathematics and Computers in Simulation, 81(6) (2011), 1190-1201. https://doi.org/10.1016/j.matcom.2010.11.005
  • Ghitany, M. E., Atieh, B., Nadarajah, S. Lindley distribution and its application, Mathematics and Computers in Simulation, 78(4) (2008), 493-506. https://doi.org/10.1016/j.matcom.2007.06.007
  • Kantar, Y. M., Senoglu, B. A comparative study for the location and scale parameters of the Weibull distribution with given shape parameter, Computers Geosciences, 34(12) (2008), 1900-1909. https://doi.org/10.1016/j.cageo.2008.04.004
  • Lindley, D. V., Fiducial distributions and Bayes’ theorem, Journal of the Royal Statistical Society, Ser. B 20 (1985), 102–107.
  • Luceno, A., Fitting the generalized Pareto distribution to data using maximum goodnessof-fit estimators, Computational Statistics Data Analysis, 51(2) (2006), 904–917. https://doi.org/10.1016/j.csda.2005.09.011
  • Mazucheli, J., Louzada, F., Ghitany, M. E., Comparison of estimation methods for the parameters of the weighted Lindley distribution, Applied Mathematics and Computation, 220 (2013), 463-471. https://doi.org/10.1016/j.amc.2013.05.082
  • Miller, L.H., Table of percentage points of Kolmogorov statistics,J. Am. Stat. Assoc. 51 (1956), 111–121. https://doi/abs/10.1080/01621459.1956.10501314
  • Patil, G. P., Rao, C. R., Weighted distributions and size-biased sampling with applications to wildlife populations and human families, Biometrics, (1978), 179–89. https://doi.org/10.2307/2530008
  • Ramos, P. L., Louzada, F., Shimizu, T. K., Luiz, A. O., The inverse weighted Lindley distribution: Properties, estimation and an application on a failure time data, Communications in Statistics-Theory and Methods, 48(10) (2019), 2372-2389. https://doi.org/10.1080/03610926.2018.1465084
  • Ramos, P. L., Louzada, F., The generalized weighted Lindley distribution: Properties, estimation, and applications, Cogent Mathematics Statistics, 3(1) (2016), 1256022. http://dx.doi.org/10.1080/23311835.2016.1256022
  • Wang, M., Wang, W., Bias-corrected maximum likelihood estimation of the parameters of the weighted Lindley distribution, Communications in Statistics-Simulation and Computation, 46(1) (2017), 530-545. https://doi.org/10.1080/23311835.2016.1256022
  • Zakerzadeh, H., Dolati, A., Generalized Lindley distribution, Journal of Mathematical Extensions, (2009), 13-25.

Comparison of different estimation methods for the inverse weighted Lindley distribution

Year 2021, , 1085 - 1098, 31.12.2021
https://doi.org/10.31801/cfsuasmas.915412

Abstract

In this paper, different estimation methods are considered for the parameters of the inverse weighted Lindley (IWL) distribution introduced by Ramos et al.(2019). Parameters of the IWL are estimated by the method of maximum likelihood (ML), least squares (LS), weighted least squares (WLS), Cram´er-von Mises (CVM) and Anderson Darling (AD). The performances of the estimators are compared using Monte Carlo simulation study via bias, mean square error and deficiency (Def) criteria. Finally, a real data set is analyzed for illustrative purposes.

References

  • Bakouch, H. S., Al-Zahrani, B. M., Al-Shomrani, A. A., Marchi, V. A., Louzada, F., An extended Lindley distribution, Journal of the Korean Statistical Society, 41 (2012),75–85. https://doi.org/10.1016/j.jkss.2011.06.002
  • D’Agostino, R., Stephens M. Goodness-of-Fit Techniques, Marcel Dekker, New York, NY, USA, 1986.
  • Ghitany, M., Al-Mutairi, D., Balakrishnan, N., Al-Enezi, L. Power Lindley distribution and associated inference, Computational Statistics Data Analysis, 64 (2013), 20–33. https://doi.org/10.1016/j.csda.2013.02.026
  • Ghitany, M. E., Alqallaf, F., Al-Mutairi, D. K., Husain, H. A. A two-parameter weighted Lindley distribution and its applications to survival data. Mathematics and Computers in Simulation, 81(6) (2011), 1190-1201. https://doi.org/10.1016/j.matcom.2010.11.005
  • Ghitany, M. E., Atieh, B., Nadarajah, S. Lindley distribution and its application, Mathematics and Computers in Simulation, 78(4) (2008), 493-506. https://doi.org/10.1016/j.matcom.2007.06.007
  • Kantar, Y. M., Senoglu, B. A comparative study for the location and scale parameters of the Weibull distribution with given shape parameter, Computers Geosciences, 34(12) (2008), 1900-1909. https://doi.org/10.1016/j.cageo.2008.04.004
  • Lindley, D. V., Fiducial distributions and Bayes’ theorem, Journal of the Royal Statistical Society, Ser. B 20 (1985), 102–107.
  • Luceno, A., Fitting the generalized Pareto distribution to data using maximum goodnessof-fit estimators, Computational Statistics Data Analysis, 51(2) (2006), 904–917. https://doi.org/10.1016/j.csda.2005.09.011
  • Mazucheli, J., Louzada, F., Ghitany, M. E., Comparison of estimation methods for the parameters of the weighted Lindley distribution, Applied Mathematics and Computation, 220 (2013), 463-471. https://doi.org/10.1016/j.amc.2013.05.082
  • Miller, L.H., Table of percentage points of Kolmogorov statistics,J. Am. Stat. Assoc. 51 (1956), 111–121. https://doi/abs/10.1080/01621459.1956.10501314
  • Patil, G. P., Rao, C. R., Weighted distributions and size-biased sampling with applications to wildlife populations and human families, Biometrics, (1978), 179–89. https://doi.org/10.2307/2530008
  • Ramos, P. L., Louzada, F., Shimizu, T. K., Luiz, A. O., The inverse weighted Lindley distribution: Properties, estimation and an application on a failure time data, Communications in Statistics-Theory and Methods, 48(10) (2019), 2372-2389. https://doi.org/10.1080/03610926.2018.1465084
  • Ramos, P. L., Louzada, F., The generalized weighted Lindley distribution: Properties, estimation, and applications, Cogent Mathematics Statistics, 3(1) (2016), 1256022. http://dx.doi.org/10.1080/23311835.2016.1256022
  • Wang, M., Wang, W., Bias-corrected maximum likelihood estimation of the parameters of the weighted Lindley distribution, Communications in Statistics-Simulation and Computation, 46(1) (2017), 530-545. https://doi.org/10.1080/23311835.2016.1256022
  • Zakerzadeh, H., Dolati, A., Generalized Lindley distribution, Journal of Mathematical Extensions, (2009), 13-25.
There are 15 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Articles
Authors

Iklim Gedik Balay 0000-0002-8951-1207

Publication Date December 31, 2021
Submission Date April 13, 2021
Acceptance Date June 25, 2021
Published in Issue Year 2021

Cite

APA Gedik Balay, I. (2021). Comparison of different estimation methods for the inverse weighted Lindley distribution. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(2), 1085-1098. https://doi.org/10.31801/cfsuasmas.915412
AMA Gedik Balay I. Comparison of different estimation methods for the inverse weighted Lindley distribution. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2021;70(2):1085-1098. doi:10.31801/cfsuasmas.915412
Chicago Gedik Balay, Iklim. “Comparison of Different Estimation Methods for the Inverse Weighted Lindley Distribution”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 2 (December 2021): 1085-98. https://doi.org/10.31801/cfsuasmas.915412.
EndNote Gedik Balay I (December 1, 2021) Comparison of different estimation methods for the inverse weighted Lindley distribution. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 2 1085–1098.
IEEE I. Gedik Balay, “Comparison of different estimation methods for the inverse weighted Lindley distribution”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 2, pp. 1085–1098, 2021, doi: 10.31801/cfsuasmas.915412.
ISNAD Gedik Balay, Iklim. “Comparison of Different Estimation Methods for the Inverse Weighted Lindley Distribution”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/2 (December 2021), 1085-1098. https://doi.org/10.31801/cfsuasmas.915412.
JAMA Gedik Balay I. Comparison of different estimation methods for the inverse weighted Lindley distribution. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:1085–1098.
MLA Gedik Balay, Iklim. “Comparison of Different Estimation Methods for the Inverse Weighted Lindley Distribution”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 2, 2021, pp. 1085-98, doi:10.31801/cfsuasmas.915412.
Vancouver Gedik Balay I. Comparison of different estimation methods for the inverse weighted Lindley distribution. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(2):1085-98.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.