Research Article
BibTex RIS Cite
Year 2022, , 395 - 406, 30.06.2022
https://doi.org/10.31801/cfsuasmas.991631

Abstract

References

  • Bertrand, J. M., Memoire sur la theorie des courbes a double courbure, Comptes Rendus, 15 (1850), 332-350. https://doi.org/10.24033/bsmf.387
  • Bharathi, K., Nagaraj, M., Quaternion valued function of a real Serret-Frenet formulae, Indian J. Pure Appl. Math., 18(6) (1987), 507-511.
  • Ekmekci, N., İlarslan, K., On Bertrand curves and their characterization, Differ. Geom. Dyn. Syst., 3 (2001), 17-24.
  • Gök, İ., Okuyucu, O. Z., Kahraman, F., Hacısalihoglu H. H., On the quaternionic $B_{2}$−slant helices in the Euclidean space $\mathbb{E}^{4}$, Adv. Appl. Clifford Algebr., 21 (2011), 707-719. https://doi.org/ 10.1007/s00006-011-0284-6
  • Görgülü, A., Özdamar, E., A Generalization of the Bertrand curves as general inclined curves in $\mathbb{E}^{n}$, Commun. Fac. Sci. Univ. Ankara, Ser. A1, 35 (1986), 53-60. https://doi.org/10.1501/Commua1-0000000254.
  • Güngör, M. A., Tosun, M., Some characterizations of quaternionic rectifying curves, Differ. Geom. Dyn. Syst., 13 (2011), 89-100.
  • Irmak, Y., Bertrand Curves and Geometric Applications in Four Dimensional Euclidean Space, MSc thesis, Ankara University, Institute of Science, 2018.
  • Kahraman Aksoyak, F., A new type of quaternionic Frame in $\mathbb{R}^{4}$, Int. J. Geom. Methods Mod. Phys., 16(6) (2019), 1950084 (11 pages). https://doi.org/10.1142/S0219887819500841.
  • Karadag, M., Sivridag, A. İ., Quaternion valued functions of a single real variable and inclined curves, Erciyes Univ. J. Inst. Sci. Technol., 13 (1997), 23-36.
  • Keçilioglu, O., İlarslan, K., Quaternionic Bertrand curves in Euclidean 4-space, Bull. Math. Anal. Appl., 5(3) (2013), 27-38.
  • Önder, M., Quaternionic Salkowski curves and quaternionic similar curves, Proc. Natl. Acad. Sci. India, Sect. A Phys. Sci., 90(3) (2020), 447-456. https://doi.org/10.1007/s40010-019-00601-y
  • Öztürk, G., Kişi, İ., Büyükkütük, S., Constant ratio quaternionic curves in Euclidean spaces, Adv. Appl. Clifford Algebr., 27(2) (2017), 1659-1673. https://doi.org/10.1007/s00006-016-0716-4
  • Pears, L. R., Bertrand curves in Riemannian space, J. London Math. Soc. 1-10(2) ( 1935), 180-183. https://doi.org/10.1112/jlms/s1-10.2.180
  • Şenyurt, S., Cevahir, C., Altun, Y., On spatial quaternionic involute curve a new view, Adv. Appl. Clifford Algebr., 27(2) (2017), 1815-1824. https://doi.org/10.1007/s00006-016-0669-7
  • Tanrıöver, N., Bertrand curves in n−dimensional Euclidean space, Journal of Karadeniz University, Faculty of Arts and Sciences, Series of Mathematics-Physics, 9 (1986), 61-62.
  • Yıldız, Ö. G., İçer, Ö., A note on evolution of quaternionic curves in the Euclidean space $\mathbb{R}^{4}$, Konuralp J. Math., 7(2) (2019), 462-469.
  • Yoon, D. W., On the quaternionic general helices in Euclidean 4-space, Honam Mathematical J., 34(3) (2012), 381-390. https://doi.org/10.5831/HMJ.2012.34.3.381
  • Yoon, D. W., Tuncer Y., Karacan, M. K., Generalized Mannheim quaternionic curves in Euclidean 4-space, Appl. Math. Sci. (Ruse), 7 (2013), 6583-6592. https://doi.org/6583-6592.10.12988/ams.2013.310560

Quaternionic Bertrand curves according to type 2-quaternionic frame in $\mathbb{R}^{4}$

Year 2022, , 395 - 406, 30.06.2022
https://doi.org/10.31801/cfsuasmas.991631

Abstract

In this paper, we give some characterization of quaternionic Bertrand curves whose the torsion is non-zero but bitorsion is zero in $\mathbb{R}^{4}$ according to Type 2-Quaternionic Frame. One of the most important points in working on quaternionic curves is that given a curve in $\mathbb{R}^{4}$, the curve in $\mathbb{R}^{3}$ associated with this curve is determined individually. So, we obtain some relationships between quaternionic Bertrand curve $\alpha^{(4)}$ in $\mathbb{R}^{4}$ and its associated spatial quaternionic curve $\alpha$ in $\mathbb{R}^{3}$. Also, we support some theorems in the paper by means of an example.

References

  • Bertrand, J. M., Memoire sur la theorie des courbes a double courbure, Comptes Rendus, 15 (1850), 332-350. https://doi.org/10.24033/bsmf.387
  • Bharathi, K., Nagaraj, M., Quaternion valued function of a real Serret-Frenet formulae, Indian J. Pure Appl. Math., 18(6) (1987), 507-511.
  • Ekmekci, N., İlarslan, K., On Bertrand curves and their characterization, Differ. Geom. Dyn. Syst., 3 (2001), 17-24.
  • Gök, İ., Okuyucu, O. Z., Kahraman, F., Hacısalihoglu H. H., On the quaternionic $B_{2}$−slant helices in the Euclidean space $\mathbb{E}^{4}$, Adv. Appl. Clifford Algebr., 21 (2011), 707-719. https://doi.org/ 10.1007/s00006-011-0284-6
  • Görgülü, A., Özdamar, E., A Generalization of the Bertrand curves as general inclined curves in $\mathbb{E}^{n}$, Commun. Fac. Sci. Univ. Ankara, Ser. A1, 35 (1986), 53-60. https://doi.org/10.1501/Commua1-0000000254.
  • Güngör, M. A., Tosun, M., Some characterizations of quaternionic rectifying curves, Differ. Geom. Dyn. Syst., 13 (2011), 89-100.
  • Irmak, Y., Bertrand Curves and Geometric Applications in Four Dimensional Euclidean Space, MSc thesis, Ankara University, Institute of Science, 2018.
  • Kahraman Aksoyak, F., A new type of quaternionic Frame in $\mathbb{R}^{4}$, Int. J. Geom. Methods Mod. Phys., 16(6) (2019), 1950084 (11 pages). https://doi.org/10.1142/S0219887819500841.
  • Karadag, M., Sivridag, A. İ., Quaternion valued functions of a single real variable and inclined curves, Erciyes Univ. J. Inst. Sci. Technol., 13 (1997), 23-36.
  • Keçilioglu, O., İlarslan, K., Quaternionic Bertrand curves in Euclidean 4-space, Bull. Math. Anal. Appl., 5(3) (2013), 27-38.
  • Önder, M., Quaternionic Salkowski curves and quaternionic similar curves, Proc. Natl. Acad. Sci. India, Sect. A Phys. Sci., 90(3) (2020), 447-456. https://doi.org/10.1007/s40010-019-00601-y
  • Öztürk, G., Kişi, İ., Büyükkütük, S., Constant ratio quaternionic curves in Euclidean spaces, Adv. Appl. Clifford Algebr., 27(2) (2017), 1659-1673. https://doi.org/10.1007/s00006-016-0716-4
  • Pears, L. R., Bertrand curves in Riemannian space, J. London Math. Soc. 1-10(2) ( 1935), 180-183. https://doi.org/10.1112/jlms/s1-10.2.180
  • Şenyurt, S., Cevahir, C., Altun, Y., On spatial quaternionic involute curve a new view, Adv. Appl. Clifford Algebr., 27(2) (2017), 1815-1824. https://doi.org/10.1007/s00006-016-0669-7
  • Tanrıöver, N., Bertrand curves in n−dimensional Euclidean space, Journal of Karadeniz University, Faculty of Arts and Sciences, Series of Mathematics-Physics, 9 (1986), 61-62.
  • Yıldız, Ö. G., İçer, Ö., A note on evolution of quaternionic curves in the Euclidean space $\mathbb{R}^{4}$, Konuralp J. Math., 7(2) (2019), 462-469.
  • Yoon, D. W., On the quaternionic general helices in Euclidean 4-space, Honam Mathematical J., 34(3) (2012), 381-390. https://doi.org/10.5831/HMJ.2012.34.3.381
  • Yoon, D. W., Tuncer Y., Karacan, M. K., Generalized Mannheim quaternionic curves in Euclidean 4-space, Appl. Math. Sci. (Ruse), 7 (2013), 6583-6592. https://doi.org/6583-6592.10.12988/ams.2013.310560
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Ferdağ Kahraman Aksoyak 0000-0003-4633-034X

Publication Date June 30, 2022
Submission Date September 6, 2021
Acceptance Date October 12, 2021
Published in Issue Year 2022

Cite

APA Kahraman Aksoyak, F. (2022). Quaternionic Bertrand curves according to type 2-quaternionic frame in $\mathbb{R}^{4}$. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(2), 395-406. https://doi.org/10.31801/cfsuasmas.991631
AMA Kahraman Aksoyak F. Quaternionic Bertrand curves according to type 2-quaternionic frame in $\mathbb{R}^{4}$. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2022;71(2):395-406. doi:10.31801/cfsuasmas.991631
Chicago Kahraman Aksoyak, Ferdağ. “Quaternionic Bertrand Curves According to Type 2-Quaternionic Frame in $\mathbb{R}^{4}$”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71, no. 2 (June 2022): 395-406. https://doi.org/10.31801/cfsuasmas.991631.
EndNote Kahraman Aksoyak F (June 1, 2022) Quaternionic Bertrand curves according to type 2-quaternionic frame in $\mathbb{R}^{4}$. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71 2 395–406.
IEEE F. Kahraman Aksoyak, “Quaternionic Bertrand curves according to type 2-quaternionic frame in $\mathbb{R}^{4}$”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 71, no. 2, pp. 395–406, 2022, doi: 10.31801/cfsuasmas.991631.
ISNAD Kahraman Aksoyak, Ferdağ. “Quaternionic Bertrand Curves According to Type 2-Quaternionic Frame in $\mathbb{R}^{4}$”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71/2 (June 2022), 395-406. https://doi.org/10.31801/cfsuasmas.991631.
JAMA Kahraman Aksoyak F. Quaternionic Bertrand curves according to type 2-quaternionic frame in $\mathbb{R}^{4}$. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71:395–406.
MLA Kahraman Aksoyak, Ferdağ. “Quaternionic Bertrand Curves According to Type 2-Quaternionic Frame in $\mathbb{R}^{4}$”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 71, no. 2, 2022, pp. 395-06, doi:10.31801/cfsuasmas.991631.
Vancouver Kahraman Aksoyak F. Quaternionic Bertrand curves according to type 2-quaternionic frame in $\mathbb{R}^{4}$. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71(2):395-406.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.