Research Article
BibTex RIS Cite

On the stochastic restricted Liu-type maximum likelihood estimator in logistic regression model

Year 2019, Volume: 68 Issue: 1, 643 - 653, 01.02.2019
https://doi.org/10.31801/cfsuasmas.456454

Abstract

In order to overcome multicollinearity, we propose a stochastic restricted Liu-type maximum likelihood estimator by incorporating Liu-type maximum likelihood estimator to the logistic regression model when the linear restrictions are stochastic. We also discuss the properties of the new estimator. Moreover, we give a method to choose the biasing parameter in the new estimator. Finally, a simulation study is given to show the performance of the new estimator.

References

  • Asar, Y. and Genç, A. New Shrinkage Parameters for the Liu-Type Logistic Estimators, Communication in Statistics-Simulation and Computation 45(12), (2016), 1094--1103.
  • sar, Y. Some New Methods to Solve Multicollinearity in Logistic Regression, Communications in Statistics-Simulation and Computation 46(4), (2017), 2576--2586.
  • Farebrother, R.W. Further Results on the Mean Square Error of Ridge Regression, Journal of the Royal Statistical Society B 38,(1976), 248--250.
  • Liu, K. A new class of biased estimate in linear regression, Communications in Statistics Theory and Method 22(2), (1993), 393--402.
  • Liu, K. Using Liu-type estimator to combat collinearity, Communications in Statistics Theory and Method 32(5), (2003), 1009--1020.
  • Saleh, A. M. E., and Kibria, B. G. Improved ridge regression estimators for the logistic regression model, Computational Statistics 28(6), (2013), 2519--2558.
  • Kibria, B. G., and Saleh, A. M. E. Improving the estimators of the parameters of a probit regression model: A ridge regression approach, Journal of Statistical Planning and Inference 142(6), (2012), 1421--1435.
  • Månsson, K., Kibria, B. G., and Shukur, G. On Liu estimators for the logit regression model, Economic Modelling 29(4), (2012), 1483--1488.
  • Månsson, K., Kibria, B. G., and Shukur, G. A restricted Liu estimator for binary regression models and its application to an applied demand system, Journal of Applied Statistics 43(6), (2016), 1119--1127.
  • McDonald, G. C., and Galarneau, D. I. A Monte Carlo evaluation of some ridge-type estimators, Journal of the American Statistical Association 70(350), (1975), 407--416.
  • İnan, D., and Erdoğan, B. E. Liu-type logistic estimator, Communications in Statistics-Simulation and Computation 42(7), (2013), 1578--1586.
  • Rao, C. R., Helge Toutenburg, S., Shalabh, and Heumann, C. Linear models and generalizations, least squares and alternatives, 3rd Edition Springer Berlin Heidelberg New York, 2008.
  • R Development Core Team R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, 2016.
  • Wu, J., and Asar, Y. On almost unbiased ridge logistic estimator for the logistic regression model, Hacettepe Journal of Mathematics and Statistics 45(3), (2016), 989--998.
  • Wu, J., and Asar, Y., More on the restricted Liu estimator in the logistic regression model, Communications in Statistics - Simulation and Computation 46(5), (2017), 3680--3689
  • Varathan, N. and Wijekoon P. Stochastic restricted maximum likelihood estimator in logistic regression model, Open Journal of Statistics 5, (2015), 837--851.
  • Varathan, N., and Wijekoon, P. Ridge Estimator in Logistic Regression under Stochastic Linear Restrictions, British Journal of Mathematics and Computer Science 15(3), (2016), 1.
  • Varathan, N., and Wijekoon, P. Logistic Liu Estimator under stochastic linear restrictions, Statistical Papers (2016), https://doi.org/10.1007/s00362-016-0856-6
Year 2019, Volume: 68 Issue: 1, 643 - 653, 01.02.2019
https://doi.org/10.31801/cfsuasmas.456454

Abstract

References

  • Asar, Y. and Genç, A. New Shrinkage Parameters for the Liu-Type Logistic Estimators, Communication in Statistics-Simulation and Computation 45(12), (2016), 1094--1103.
  • sar, Y. Some New Methods to Solve Multicollinearity in Logistic Regression, Communications in Statistics-Simulation and Computation 46(4), (2017), 2576--2586.
  • Farebrother, R.W. Further Results on the Mean Square Error of Ridge Regression, Journal of the Royal Statistical Society B 38,(1976), 248--250.
  • Liu, K. A new class of biased estimate in linear regression, Communications in Statistics Theory and Method 22(2), (1993), 393--402.
  • Liu, K. Using Liu-type estimator to combat collinearity, Communications in Statistics Theory and Method 32(5), (2003), 1009--1020.
  • Saleh, A. M. E., and Kibria, B. G. Improved ridge regression estimators for the logistic regression model, Computational Statistics 28(6), (2013), 2519--2558.
  • Kibria, B. G., and Saleh, A. M. E. Improving the estimators of the parameters of a probit regression model: A ridge regression approach, Journal of Statistical Planning and Inference 142(6), (2012), 1421--1435.
  • Månsson, K., Kibria, B. G., and Shukur, G. On Liu estimators for the logit regression model, Economic Modelling 29(4), (2012), 1483--1488.
  • Månsson, K., Kibria, B. G., and Shukur, G. A restricted Liu estimator for binary regression models and its application to an applied demand system, Journal of Applied Statistics 43(6), (2016), 1119--1127.
  • McDonald, G. C., and Galarneau, D. I. A Monte Carlo evaluation of some ridge-type estimators, Journal of the American Statistical Association 70(350), (1975), 407--416.
  • İnan, D., and Erdoğan, B. E. Liu-type logistic estimator, Communications in Statistics-Simulation and Computation 42(7), (2013), 1578--1586.
  • Rao, C. R., Helge Toutenburg, S., Shalabh, and Heumann, C. Linear models and generalizations, least squares and alternatives, 3rd Edition Springer Berlin Heidelberg New York, 2008.
  • R Development Core Team R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, 2016.
  • Wu, J., and Asar, Y. On almost unbiased ridge logistic estimator for the logistic regression model, Hacettepe Journal of Mathematics and Statistics 45(3), (2016), 989--998.
  • Wu, J., and Asar, Y., More on the restricted Liu estimator in the logistic regression model, Communications in Statistics - Simulation and Computation 46(5), (2017), 3680--3689
  • Varathan, N. and Wijekoon P. Stochastic restricted maximum likelihood estimator in logistic regression model, Open Journal of Statistics 5, (2015), 837--851.
  • Varathan, N., and Wijekoon, P. Ridge Estimator in Logistic Regression under Stochastic Linear Restrictions, British Journal of Mathematics and Computer Science 15(3), (2016), 1.
  • Varathan, N., and Wijekoon, P. Logistic Liu Estimator under stochastic linear restrictions, Statistical Papers (2016), https://doi.org/10.1007/s00362-016-0856-6
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Review Articles
Authors

Jibo Wu This is me 0000-0001-6233-6704

Yasin Asar This is me 0000-0003-1109-8456

Publication Date February 1, 2019
Submission Date October 18, 2017
Acceptance Date March 30, 2018
Published in Issue Year 2019 Volume: 68 Issue: 1

Cite

APA Wu, J., & Asar, Y. (2019). On the stochastic restricted Liu-type maximum likelihood estimator in logistic regression model. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1), 643-653. https://doi.org/10.31801/cfsuasmas.456454
AMA Wu J, Asar Y. On the stochastic restricted Liu-type maximum likelihood estimator in logistic regression model. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2019;68(1):643-653. doi:10.31801/cfsuasmas.456454
Chicago Wu, Jibo, and Yasin Asar. “On the Stochastic Restricted Liu-Type Maximum Likelihood Estimator in Logistic Regression Model”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 1 (February 2019): 643-53. https://doi.org/10.31801/cfsuasmas.456454.
EndNote Wu J, Asar Y (February 1, 2019) On the stochastic restricted Liu-type maximum likelihood estimator in logistic regression model. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 1 643–653.
IEEE J. Wu and Y. Asar, “On the stochastic restricted Liu-type maximum likelihood estimator in logistic regression model”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 1, pp. 643–653, 2019, doi: 10.31801/cfsuasmas.456454.
ISNAD Wu, Jibo - Asar, Yasin. “On the Stochastic Restricted Liu-Type Maximum Likelihood Estimator in Logistic Regression Model”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/1 (February 2019), 643-653. https://doi.org/10.31801/cfsuasmas.456454.
JAMA Wu J, Asar Y. On the stochastic restricted Liu-type maximum likelihood estimator in logistic regression model. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:643–653.
MLA Wu, Jibo and Yasin Asar. “On the Stochastic Restricted Liu-Type Maximum Likelihood Estimator in Logistic Regression Model”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 1, 2019, pp. 643-5, doi:10.31801/cfsuasmas.456454.
Vancouver Wu J, Asar Y. On the stochastic restricted Liu-type maximum likelihood estimator in logistic regression model. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(1):643-5.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.