Research Article
BibTex RIS Cite

On a new variation of injective modules

Year 2019, Volume: 68 Issue: 1, 702 - 711, 01.02.2019
https://doi.org/10.31801/cfsuasmas.464103

Abstract

In this paper, we provide various properties of GE and GEE-modules, a new variation of injective modules. We call M a GE-module if it has a g-supplement in every extension N and, we call also M a GEE-module if it has ample g-supplements in every extension N. In particular, we prove that every semisimple module is a GE-module. We show that a module M is a GEE-module if and only if every submodule is a GE-module. We study the structure of GE and GEE-modules over Dedekind domains. Over Dedekind domains the class of GE-modules lies between WS-coinjective modules and Zöschinger's modules with the property (E). We also prove that, if a ring R is a local Dedekind domain, an R-module M is a GE-module if and only if M≅(R^{∗})ⁿ⊕K⊕N, where R^{∗} is the completion of R, K is injective and N is a bounded module.

References

  • Alizade, R., Bilhan, G., Smith, P.F., Modules whose maximal submodules have supplements, Comm. in Algebra, 29(6), (2001), 2389-2405.
  • Alizade, R., Demirci, Y.M., Durgun, Y., Pusat, D., The proper class generated by weak supplements, Comm. in Algebra, 42, (2014),56-72.
  • Alizade R., Büyükaşık, E., Extensions of weakly supplemented modules, Math. Scand., 103, (2008), 161-168.
  • Byrd, K.A., Rings whose quasi-injective modules are semisimple, Proc. Amer. Math. Soc., 33(2), (1972), 235-240.
  • Clark, J., Lomp, C., Vanaja, N., Wisbauer, R., Lifting Modules. Supplements and Projectivity in Module Theory, Frontiers in Mathematics-Birkhäuser-Basel, (2006), 406.
  • Koşar, B., Nebiyev, C., Sökmez, N., G-supplemented modules, Ukrainian Mathematical Journal, 67(6), (2015), 975-980.
  • Çalışıcı, H., Türkmen, E., Modules that have a supplement in every cofinite extension, Georgian Math. J., 19, (2012), 209-216.
  • Hausen, J., Supplemented modules over Dedekind domains, Pac. J. Math., 100(2), (1982), 387-402.
  • Özdemir, S., Rad-supplementing modules, J. Korean Math. Soc., 53(2), (2016), 403-414.
  • Sharpe, D.W., Vamos, P., Injective Modules, Cambridge University Press, (1972), 190.
  • Smith, P.F., Finitely generated supplemented modules are amply supplemented, The Arabian Journal for Science And Engineering, 25(2C), (2000), 69-79.
  • Türkmen, B.N., Modules that have a supplement in every coatomic extension, Miskolc Mathematical Notes, 16(1), (2015), 543-551.
  • Wisbauer, R., Foundations of Modules and Ring Theory, Gordon and Breach, (1991), 606.
  • Zhou, D.X., Zhang X.R., Small-essential submodules and morita duality, Southeast Asian Bulletin of Mathematics, 3, (2011), 1051-1062.
  • Zöschinger, H., Modules that have a supplement in every extension, Math. Scand., 32, (1974), 267-287.
Year 2019, Volume: 68 Issue: 1, 702 - 711, 01.02.2019
https://doi.org/10.31801/cfsuasmas.464103

Abstract

References

  • Alizade, R., Bilhan, G., Smith, P.F., Modules whose maximal submodules have supplements, Comm. in Algebra, 29(6), (2001), 2389-2405.
  • Alizade, R., Demirci, Y.M., Durgun, Y., Pusat, D., The proper class generated by weak supplements, Comm. in Algebra, 42, (2014),56-72.
  • Alizade R., Büyükaşık, E., Extensions of weakly supplemented modules, Math. Scand., 103, (2008), 161-168.
  • Byrd, K.A., Rings whose quasi-injective modules are semisimple, Proc. Amer. Math. Soc., 33(2), (1972), 235-240.
  • Clark, J., Lomp, C., Vanaja, N., Wisbauer, R., Lifting Modules. Supplements and Projectivity in Module Theory, Frontiers in Mathematics-Birkhäuser-Basel, (2006), 406.
  • Koşar, B., Nebiyev, C., Sökmez, N., G-supplemented modules, Ukrainian Mathematical Journal, 67(6), (2015), 975-980.
  • Çalışıcı, H., Türkmen, E., Modules that have a supplement in every cofinite extension, Georgian Math. J., 19, (2012), 209-216.
  • Hausen, J., Supplemented modules over Dedekind domains, Pac. J. Math., 100(2), (1982), 387-402.
  • Özdemir, S., Rad-supplementing modules, J. Korean Math. Soc., 53(2), (2016), 403-414.
  • Sharpe, D.W., Vamos, P., Injective Modules, Cambridge University Press, (1972), 190.
  • Smith, P.F., Finitely generated supplemented modules are amply supplemented, The Arabian Journal for Science And Engineering, 25(2C), (2000), 69-79.
  • Türkmen, B.N., Modules that have a supplement in every coatomic extension, Miskolc Mathematical Notes, 16(1), (2015), 543-551.
  • Wisbauer, R., Foundations of Modules and Ring Theory, Gordon and Breach, (1991), 606.
  • Zhou, D.X., Zhang X.R., Small-essential submodules and morita duality, Southeast Asian Bulletin of Mathematics, 3, (2011), 1051-1062.
  • Zöschinger, H., Modules that have a supplement in every extension, Math. Scand., 32, (1974), 267-287.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Review Articles
Authors

Ali Pancar This is me 0000-0003-3870-9210

Burcu Nişancı Türkmen 0000-0001-7900-0529

Celil Nebiyev 0000-0002-7992-7225

Ergül Türkmen This is me 0000-0002-7082-1176

Publication Date February 1, 2019
Submission Date November 22, 2017
Acceptance Date March 10, 2018
Published in Issue Year 2019 Volume: 68 Issue: 1

Cite

APA Pancar, A., Nişancı Türkmen, B., Nebiyev, C., Türkmen, E. (2019). On a new variation of injective modules. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1), 702-711. https://doi.org/10.31801/cfsuasmas.464103
AMA Pancar A, Nişancı Türkmen B, Nebiyev C, Türkmen E. On a new variation of injective modules. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2019;68(1):702-711. doi:10.31801/cfsuasmas.464103
Chicago Pancar, Ali, Burcu Nişancı Türkmen, Celil Nebiyev, and Ergül Türkmen. “On a New Variation of Injective Modules”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 1 (February 2019): 702-11. https://doi.org/10.31801/cfsuasmas.464103.
EndNote Pancar A, Nişancı Türkmen B, Nebiyev C, Türkmen E (February 1, 2019) On a new variation of injective modules. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 1 702–711.
IEEE A. Pancar, B. Nişancı Türkmen, C. Nebiyev, and E. Türkmen, “On a new variation of injective modules”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 1, pp. 702–711, 2019, doi: 10.31801/cfsuasmas.464103.
ISNAD Pancar, Ali et al. “On a New Variation of Injective Modules”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/1 (February 2019), 702-711. https://doi.org/10.31801/cfsuasmas.464103.
JAMA Pancar A, Nişancı Türkmen B, Nebiyev C, Türkmen E. On a new variation of injective modules. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:702–711.
MLA Pancar, Ali et al. “On a New Variation of Injective Modules”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 1, 2019, pp. 702-11, doi:10.31801/cfsuasmas.464103.
Vancouver Pancar A, Nişancı Türkmen B, Nebiyev C, Türkmen E. On a new variation of injective modules. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(1):702-11.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.