Research Article
BibTex RIS Cite

Local pre-Hausdorff extended pseudo-quasi-semi metric spaces

Year 2019, Volume: 68 Issue: 1, 862 - 870, 01.02.2019
https://doi.org/10.31801/cfsuasmas.484924

Abstract

In this paper, we characterize local pre-Hausdorff extended pseudo-quasi-semi metric spaces and investigate the relationships between them. Finally, we show that local pre-Hausdorff extended pseudo-quasi-semi metric spaces are hereditary and productive

References

  • Adámek, J., Herrlich, H. and Strecker, G.E., Abstract and Concrete Categories, Wiley, New York, 1990.
  • Adámek, J. and Reiterman, J., Cartesian Closed Hull for Metric Spaces, Comment. Math. Univ. Carolinae, 31, (1990), 1-6.
  • Albert, G.A., A Note on Quasi-Metric Spaces, Bull. Amer. Math. Soc., 47, (1941), 479-482.
  • Baran, M., Separation Properties, Indian J. Pure Appl. Math., 23(5) (1991), 333-341.
  • Baran, M., Generalized Local Separation Properties, Indian J. pure appl., 25(6), (1994), 615-620.
  • Baran, M. and Altindis, H., T₂-Objects in Topological Categories, Acta Math. Hungar., 71, (1996), 41-48.
  • Baran, M., Separation Properties in Topological Categories, Math. Balkanica, 10, (1996), 39-48.
  • Baran, M., Completely Regular Objects and Normal Objects in Topological Categories, Acta Math. Hungar., 80, (1998), 211-224.
  • Baran, M., T₃ and T₄ -Objects in Topological Categories, Indian J.Pure Appl. Math., 29, (1998), 59-69.
  • Baran, M., PreT₂ Objects in Topological Categories, Appl. Categor. Struct., 17, (2009), 591-602.
  • Baran, M. and Al-Safar, J., Quotient-Reflective and Bireflective Subcategories ot the Category of Preordered Sets, Topology Appl., 158, (2011), 2076-2084.
  • Lowen-Colebunders, E., Function Classes of Cauchy Continuous Maps, Marcel Dekker, New York, 1989.
  • Herrlich, H., Topological Functors, Gen. Topology Appl., 4, (1974), 125-142.
  • Johnstone, P.T., Topos Theory, L.M.S Mathematics Monograph: No. 10 Academic Press, New York, 1977.
  • Kula, M., A Note on Cauchy Spaces, Acta Math. Hungar., 133, (2011), 14-32.
  • Larrecq, J.G., Non-Hausdorff Topology and Domain Theory, Cambridge University Press, 2013.
  • Lawvere, F.W., Metric Spaces, Generalized Logic, and Closed Categories, Rend. Sem. Mat. Fis. Milano, 43, (1973), 135-166.
  • Lowen, R., Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad, Oxford Mathematical Monographs, Oxford University Press., 1997.
  • Lowen, E. and Lowen, R., A Quasitopos Containing CONV and MET as Full Subcategories, Internat. J. Math. and Math. Sci. 11, (1988), 417-438.
  • MacLane, S. and Moerdijk, I., Sheaves in Geometry and Logic, Springer- Verlag, 1992.
  • Mielke, M. V., Separation Axioms and Geometric Realizations, Indian J.Pure Appl. Math., 25, (1994), 711-722.
  • Mielke, M. V. and Stine, J., Pre-Hausdorff Objects, Publ. Math. Debrecen, 73, (2008), 379-390.
  • Nauwelaerts, M., Cartesian Closed Hull for (Quasi-) Metric Spaces, Comment. Math. Univ. Carolinae, 41, (2000), 559-573.
  • Preuss, G., Theory of Topological Structures, An Approach to topological Categories, D. Reidel Publ. Co., Dordrecht, 1988.
  • Royden, H. L., Real Analysis, Macmillian Publishing Co., Inc., 1968.
Year 2019, Volume: 68 Issue: 1, 862 - 870, 01.02.2019
https://doi.org/10.31801/cfsuasmas.484924

Abstract

References

  • Adámek, J., Herrlich, H. and Strecker, G.E., Abstract and Concrete Categories, Wiley, New York, 1990.
  • Adámek, J. and Reiterman, J., Cartesian Closed Hull for Metric Spaces, Comment. Math. Univ. Carolinae, 31, (1990), 1-6.
  • Albert, G.A., A Note on Quasi-Metric Spaces, Bull. Amer. Math. Soc., 47, (1941), 479-482.
  • Baran, M., Separation Properties, Indian J. Pure Appl. Math., 23(5) (1991), 333-341.
  • Baran, M., Generalized Local Separation Properties, Indian J. pure appl., 25(6), (1994), 615-620.
  • Baran, M. and Altindis, H., T₂-Objects in Topological Categories, Acta Math. Hungar., 71, (1996), 41-48.
  • Baran, M., Separation Properties in Topological Categories, Math. Balkanica, 10, (1996), 39-48.
  • Baran, M., Completely Regular Objects and Normal Objects in Topological Categories, Acta Math. Hungar., 80, (1998), 211-224.
  • Baran, M., T₃ and T₄ -Objects in Topological Categories, Indian J.Pure Appl. Math., 29, (1998), 59-69.
  • Baran, M., PreT₂ Objects in Topological Categories, Appl. Categor. Struct., 17, (2009), 591-602.
  • Baran, M. and Al-Safar, J., Quotient-Reflective and Bireflective Subcategories ot the Category of Preordered Sets, Topology Appl., 158, (2011), 2076-2084.
  • Lowen-Colebunders, E., Function Classes of Cauchy Continuous Maps, Marcel Dekker, New York, 1989.
  • Herrlich, H., Topological Functors, Gen. Topology Appl., 4, (1974), 125-142.
  • Johnstone, P.T., Topos Theory, L.M.S Mathematics Monograph: No. 10 Academic Press, New York, 1977.
  • Kula, M., A Note on Cauchy Spaces, Acta Math. Hungar., 133, (2011), 14-32.
  • Larrecq, J.G., Non-Hausdorff Topology and Domain Theory, Cambridge University Press, 2013.
  • Lawvere, F.W., Metric Spaces, Generalized Logic, and Closed Categories, Rend. Sem. Mat. Fis. Milano, 43, (1973), 135-166.
  • Lowen, R., Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad, Oxford Mathematical Monographs, Oxford University Press., 1997.
  • Lowen, E. and Lowen, R., A Quasitopos Containing CONV and MET as Full Subcategories, Internat. J. Math. and Math. Sci. 11, (1988), 417-438.
  • MacLane, S. and Moerdijk, I., Sheaves in Geometry and Logic, Springer- Verlag, 1992.
  • Mielke, M. V., Separation Axioms and Geometric Realizations, Indian J.Pure Appl. Math., 25, (1994), 711-722.
  • Mielke, M. V. and Stine, J., Pre-Hausdorff Objects, Publ. Math. Debrecen, 73, (2008), 379-390.
  • Nauwelaerts, M., Cartesian Closed Hull for (Quasi-) Metric Spaces, Comment. Math. Univ. Carolinae, 41, (2000), 559-573.
  • Preuss, G., Theory of Topological Structures, An Approach to topological Categories, D. Reidel Publ. Co., Dordrecht, 1988.
  • Royden, H. L., Real Analysis, Macmillian Publishing Co., Inc., 1968.
There are 25 citations in total.

Details

Primary Language English
Journal Section Review Articles
Authors

Tesnim Meryem Baran This is me 0000-0001-6639-8654

Muammer Kula 0000-0002-1366-6149

Publication Date February 1, 2019
Submission Date February 1, 2018
Acceptance Date November 19, 2018
Published in Issue Year 2019 Volume: 68 Issue: 1

Cite

APA Baran, T. M., & Kula, M. (2019). Local pre-Hausdorff extended pseudo-quasi-semi metric spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1), 862-870. https://doi.org/10.31801/cfsuasmas.484924
AMA Baran TM, Kula M. Local pre-Hausdorff extended pseudo-quasi-semi metric spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2019;68(1):862-870. doi:10.31801/cfsuasmas.484924
Chicago Baran, Tesnim Meryem, and Muammer Kula. “Local Pre-Hausdorff Extended Pseudo-Quasi-Semi Metric Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 1 (February 2019): 862-70. https://doi.org/10.31801/cfsuasmas.484924.
EndNote Baran TM, Kula M (February 1, 2019) Local pre-Hausdorff extended pseudo-quasi-semi metric spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 1 862–870.
IEEE T. M. Baran and M. Kula, “Local pre-Hausdorff extended pseudo-quasi-semi metric spaces”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 1, pp. 862–870, 2019, doi: 10.31801/cfsuasmas.484924.
ISNAD Baran, Tesnim Meryem - Kula, Muammer. “Local Pre-Hausdorff Extended Pseudo-Quasi-Semi Metric Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/1 (February 2019), 862-870. https://doi.org/10.31801/cfsuasmas.484924.
JAMA Baran TM, Kula M. Local pre-Hausdorff extended pseudo-quasi-semi metric spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:862–870.
MLA Baran, Tesnim Meryem and Muammer Kula. “Local Pre-Hausdorff Extended Pseudo-Quasi-Semi Metric Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 1, 2019, pp. 862-70, doi:10.31801/cfsuasmas.484924.
Vancouver Baran TM, Kula M. Local pre-Hausdorff extended pseudo-quasi-semi metric spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(1):862-70.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.