Research Article
BibTex RIS Cite

Global existence and stability results for Hadamard--Volterra--Stieltjes integral equations

Year 2019, Volume: 68 Issue: 2, 1387 - 1400, 01.08.2019
https://doi.org/10.31801/cfsuasmas.530865

Abstract

In this paper we prove the existence and stability of solutions of a class of Hadamard--Volterra--Stieltjes integral equations in the Banach space of continuous and bounded functions on unbounded interval. That result is proved under rather general hypotheses. The main tools used in our considerations are the concept of measure of noncompactness in conjunction with the Darbo and Mönch fixed point theorems.

References

  • Abbas, S., Alaidarous, E., Benchohra, M., Nieto, J.J., Existence and Ulam stabilities for Hadamard-Stieltjes fractional integral equations. Discrete Dyn. Nat. Soc. 2015, Art. ID 317094, 6 pp.
  • Abbas, S. and Benchohra, M., Nonlinear fractional order Riemann-Liouville Volterra-Stieltjes partial integral equations on unbounded domains, Commun. Math. Anal. 14 (1) (2013), 104--117.
  • Abbas, S., Benchohra, M., Graef, J. and Henderson, J., Implicit Fractional Differential and Integral Equations; Existence and Stability, De Gruyter, Berlin, 2018.
  • Abbas, S., Benchohra, M. and Henderson, J., Asymptotic behavior of solutions of nonlinear fractional order Riemann-Liouville Volterra-Stieltjes quadratic integral equations, Int. Elect. J. Pure Appl. Math. 4 (3) (2012), 195--209.
  • Abbas, S., Benchohra, M. and Nieto, J.J., Global attractivity of solutions for nonlinear fractional order Riemann-LiouvilleVolterra-Stieltjes partial integral equations, Electron. J. Qual. Theory Differ. Equ. 81 (2012), 1--15.
  • Abbas, S., Benchohra, M. and N'Guérékata, G. M., Topics in Fractional Differential Equations, Springer, New York, 2012.
  • Abbas, S., Benchohra, M. and N'Guérékata, G. M., Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015.
  • Agarwal, R. P., O'Regan, D., Infinite Interval Problems for Differential, Difference and Integral Equations , Kluwer Academic Publishers, Dordrecht, 2001.
  • Ahmad, B., Ntouyas, S.K., Initial value problems of fractional order Hadamard-Type functional differential equations Electron. J. Differential Equations 2015, No. 77, 9 pp.
  • Appell, J., Banas, J., Merentes, N., Bounded Variation and Around, De Gruyter Series in Nonlinear Analysis and Applications 17. Walter de Gruyter, Berlin, 2014.
  • Banas, J., Dhage, B. C., Global asymptotic stability of solutions of a functional integral equation, Nonlinear Anal. 69 (2008), no. 7, 1945--1952.
  • Banas, J., Cabrera, I. J., Sadarangani, K., On existence and asymptotic behaviour of solutions of a functional integral equation, Nonlinear Anal. 66 (2007), no. 10, 2246--2254.
  • Banas, J., Dhage, B. C., Monotonic solutions of a class of quadratic integral equations of Volterra type, Comput. Math. Appl. 49 (2005), no. 5-6, 943--952.
  • Banas, J., Geobel K., Measures of Noncompactness in Banach Spaces, Lecture Notes in pure and appl. Math. 60, Marcel Dekker, New York and Basel, 1980.
  • Banas, J., O'Regan, D., On existence and local attractivity of solutions of a quadratic Volterra integral equations of fractional order J. Math. Anal. Appl 345 (2008), no. 1, 573--582.
  • Banas, J., Rzepka, B., Nondecreasing solutions of a quadratic singular Volterra integral equation, Math. Comput. Modelling 49 (2009), no. 3-4, 488--496.
  • Benchohra, M., Henderson, J., Seba, D., Measure of noncompactness and fractional differential equations in Banach spaces PanAmer. Math. J. 20 (2010), no. 3, 27--37.
  • Butzer, P. L., Kilbas, A. A. and Trujillo, J. J., Fractional calculus in the mellin setting and Hadamard-type fractional integrals. J. Math. Anal. Appl. 269 (2002),1-27.
  • Butzer, P. L., Kilbas, A. A. and Trujillo, J. J., Mellin transform analysis and integration by parts for Hadamard-type fractional integrals. J. Math. Anal. Appl. 270 (2002), 1-15.
  • Castillo, M., Rlvas, S., Sanoja, M., Zea, I., Functions of bounded variation in the sense of Riesz-Korenblum, J. Funct. Spaces Appl. 2013, Art. ID 718507, 12 pp.
  • Corduneanu, C., Integral Equations and Stability of Feedback Systems, Acedemic Press, New York, 1973.
  • González, C., Melado, A. J., Fuster, E. L., A Mönch type fixed point theorem under the interior condition J. Math. Anal. appl 352 (2009), 816-821.
  • Kilbas, A., Hadamard-Type fractional calculus, J. Korean Math. Soc. 38 (2001), no. 6, 1191--1204.
  • Mcfadden, C., Riemann--Stieltjes Integration, Theses and Dissertations - Virginia University (2011).
  • Natanson, I. P., Theory of Functions of a Real Variable, Ungar, New York, 1960.
  • Pooseh, S., Almeida, R. and Torres, D., Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivative. Numer. Funct. Anal. Optim. 33 (3) (2012), 301-319.
  • Rudin, W., Real and Complex Analysis, McGraw-Hill, New York, 1970. SKM : Samko, S., Kilbas, A., Marichev, O. I., Fractional integrals and derivatives (Theory and Applications) , Gordon and Breach Science Publishers. Yverdon, 1993.
  • Schwabik, S., Tvrdy, M., Vejvoda, O. Differential and integral equations ( Boundary Value Problems and Adjoints), C. A. S. Praha (1979).
Year 2019, Volume: 68 Issue: 2, 1387 - 1400, 01.08.2019
https://doi.org/10.31801/cfsuasmas.530865

Abstract

References

  • Abbas, S., Alaidarous, E., Benchohra, M., Nieto, J.J., Existence and Ulam stabilities for Hadamard-Stieltjes fractional integral equations. Discrete Dyn. Nat. Soc. 2015, Art. ID 317094, 6 pp.
  • Abbas, S. and Benchohra, M., Nonlinear fractional order Riemann-Liouville Volterra-Stieltjes partial integral equations on unbounded domains, Commun. Math. Anal. 14 (1) (2013), 104--117.
  • Abbas, S., Benchohra, M., Graef, J. and Henderson, J., Implicit Fractional Differential and Integral Equations; Existence and Stability, De Gruyter, Berlin, 2018.
  • Abbas, S., Benchohra, M. and Henderson, J., Asymptotic behavior of solutions of nonlinear fractional order Riemann-Liouville Volterra-Stieltjes quadratic integral equations, Int. Elect. J. Pure Appl. Math. 4 (3) (2012), 195--209.
  • Abbas, S., Benchohra, M. and Nieto, J.J., Global attractivity of solutions for nonlinear fractional order Riemann-LiouvilleVolterra-Stieltjes partial integral equations, Electron. J. Qual. Theory Differ. Equ. 81 (2012), 1--15.
  • Abbas, S., Benchohra, M. and N'Guérékata, G. M., Topics in Fractional Differential Equations, Springer, New York, 2012.
  • Abbas, S., Benchohra, M. and N'Guérékata, G. M., Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015.
  • Agarwal, R. P., O'Regan, D., Infinite Interval Problems for Differential, Difference and Integral Equations , Kluwer Academic Publishers, Dordrecht, 2001.
  • Ahmad, B., Ntouyas, S.K., Initial value problems of fractional order Hadamard-Type functional differential equations Electron. J. Differential Equations 2015, No. 77, 9 pp.
  • Appell, J., Banas, J., Merentes, N., Bounded Variation and Around, De Gruyter Series in Nonlinear Analysis and Applications 17. Walter de Gruyter, Berlin, 2014.
  • Banas, J., Dhage, B. C., Global asymptotic stability of solutions of a functional integral equation, Nonlinear Anal. 69 (2008), no. 7, 1945--1952.
  • Banas, J., Cabrera, I. J., Sadarangani, K., On existence and asymptotic behaviour of solutions of a functional integral equation, Nonlinear Anal. 66 (2007), no. 10, 2246--2254.
  • Banas, J., Dhage, B. C., Monotonic solutions of a class of quadratic integral equations of Volterra type, Comput. Math. Appl. 49 (2005), no. 5-6, 943--952.
  • Banas, J., Geobel K., Measures of Noncompactness in Banach Spaces, Lecture Notes in pure and appl. Math. 60, Marcel Dekker, New York and Basel, 1980.
  • Banas, J., O'Regan, D., On existence and local attractivity of solutions of a quadratic Volterra integral equations of fractional order J. Math. Anal. Appl 345 (2008), no. 1, 573--582.
  • Banas, J., Rzepka, B., Nondecreasing solutions of a quadratic singular Volterra integral equation, Math. Comput. Modelling 49 (2009), no. 3-4, 488--496.
  • Benchohra, M., Henderson, J., Seba, D., Measure of noncompactness and fractional differential equations in Banach spaces PanAmer. Math. J. 20 (2010), no. 3, 27--37.
  • Butzer, P. L., Kilbas, A. A. and Trujillo, J. J., Fractional calculus in the mellin setting and Hadamard-type fractional integrals. J. Math. Anal. Appl. 269 (2002),1-27.
  • Butzer, P. L., Kilbas, A. A. and Trujillo, J. J., Mellin transform analysis and integration by parts for Hadamard-type fractional integrals. J. Math. Anal. Appl. 270 (2002), 1-15.
  • Castillo, M., Rlvas, S., Sanoja, M., Zea, I., Functions of bounded variation in the sense of Riesz-Korenblum, J. Funct. Spaces Appl. 2013, Art. ID 718507, 12 pp.
  • Corduneanu, C., Integral Equations and Stability of Feedback Systems, Acedemic Press, New York, 1973.
  • González, C., Melado, A. J., Fuster, E. L., A Mönch type fixed point theorem under the interior condition J. Math. Anal. appl 352 (2009), 816-821.
  • Kilbas, A., Hadamard-Type fractional calculus, J. Korean Math. Soc. 38 (2001), no. 6, 1191--1204.
  • Mcfadden, C., Riemann--Stieltjes Integration, Theses and Dissertations - Virginia University (2011).
  • Natanson, I. P., Theory of Functions of a Real Variable, Ungar, New York, 1960.
  • Pooseh, S., Almeida, R. and Torres, D., Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivative. Numer. Funct. Anal. Optim. 33 (3) (2012), 301-319.
  • Rudin, W., Real and Complex Analysis, McGraw-Hill, New York, 1970. SKM : Samko, S., Kilbas, A., Marichev, O. I., Fractional integrals and derivatives (Theory and Applications) , Gordon and Breach Science Publishers. Yverdon, 1993.
  • Schwabik, S., Tvrdy, M., Vejvoda, O. Differential and integral equations ( Boundary Value Problems and Adjoints), C. A. S. Praha (1979).
There are 28 citations in total.

Details

Primary Language English
Journal Section Review Articles
Authors

Said Baghdad This is me 0000-0002-2861-5256

Mouffak Benchohra 0000-0003-3063-9449

Publication Date August 1, 2019
Submission Date May 25, 2018
Acceptance Date September 22, 2018
Published in Issue Year 2019 Volume: 68 Issue: 2

Cite

APA Baghdad, S., & Benchohra, M. (2019). Global existence and stability results for Hadamard--Volterra--Stieltjes integral equations. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 1387-1400. https://doi.org/10.31801/cfsuasmas.530865
AMA Baghdad S, Benchohra M. Global existence and stability results for Hadamard--Volterra--Stieltjes integral equations. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2019;68(2):1387-1400. doi:10.31801/cfsuasmas.530865
Chicago Baghdad, Said, and Mouffak Benchohra. “Global Existence and Stability Results for Hadamard--Volterra--Stieltjes Integral Equations”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 2 (August 2019): 1387-1400. https://doi.org/10.31801/cfsuasmas.530865.
EndNote Baghdad S, Benchohra M (August 1, 2019) Global existence and stability results for Hadamard--Volterra--Stieltjes integral equations. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 2 1387–1400.
IEEE S. Baghdad and M. Benchohra, “Global existence and stability results for Hadamard--Volterra--Stieltjes integral equations”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 2, pp. 1387–1400, 2019, doi: 10.31801/cfsuasmas.530865.
ISNAD Baghdad, Said - Benchohra, Mouffak. “Global Existence and Stability Results for Hadamard--Volterra--Stieltjes Integral Equations”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/2 (August 2019), 1387-1400. https://doi.org/10.31801/cfsuasmas.530865.
JAMA Baghdad S, Benchohra M. Global existence and stability results for Hadamard--Volterra--Stieltjes integral equations. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:1387–1400.
MLA Baghdad, Said and Mouffak Benchohra. “Global Existence and Stability Results for Hadamard--Volterra--Stieltjes Integral Equations”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 2, 2019, pp. 1387-00, doi:10.31801/cfsuasmas.530865.
Vancouver Baghdad S, Benchohra M. Global existence and stability results for Hadamard--Volterra--Stieltjes integral equations. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(2):1387-400.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.