BibTex RIS Cite

Cone convergence for multiple sequences

Year 2013, Volume: 62 Issue: 1, 115 - 119, 01.02.2013
https://doi.org/10.1501/Commua1_0000000690

Abstract

References

  • H. Fast, Sur la convergence statistique, Colloq. Math. 2(1951), 241–244.
  • H.J. Hamilton, Transformations of multiple sequences, Duke Math. J. 2(1936), 29–60.
  • A Pringsheim, Zur theorie der zweifach unend lichen Zahlenfolgen, Math. Ann. 53(3)(1900), 289–321.
  • G.M. Robinson, Divergent double sequences and series, Trans. Amer. Math. Soc. 28(1926), 50–73.
  • B.C. Tripathy, Statistically convergent double sequences, Tamkang J. Math. 34(3)(2003), 231– 237.
  • B.C. Tripathy, On I-convergent double sequences, Soochow J. Math. 31(4)(2005), 549–560.
  • Mursaleen, O.H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288(2003), 223–231.

Cone convergence for multiple sequences

Year 2013, Volume: 62 Issue: 1, 115 - 119, 01.02.2013
https://doi.org/10.1501/Commua1_0000000690

Abstract

The aim of this paper is to introduce a new type convergencewhich is useful when a d-multiple sequence is not convergent in some usualsenses

References

  • H. Fast, Sur la convergence statistique, Colloq. Math. 2(1951), 241–244.
  • H.J. Hamilton, Transformations of multiple sequences, Duke Math. J. 2(1936), 29–60.
  • A Pringsheim, Zur theorie der zweifach unend lichen Zahlenfolgen, Math. Ann. 53(3)(1900), 289–321.
  • G.M. Robinson, Divergent double sequences and series, Trans. Amer. Math. Soc. 28(1926), 50–73.
  • B.C. Tripathy, Statistically convergent double sequences, Tamkang J. Math. 34(3)(2003), 231– 237.
  • B.C. Tripathy, On I-convergent double sequences, Soochow J. Math. 31(4)(2005), 549–560.
  • Mursaleen, O.H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288(2003), 223–231.
There are 7 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Ahmet Şahiner This is me

Publication Date February 1, 2013
Published in Issue Year 2013 Volume: 62 Issue: 1

Cite

APA Şahiner, A. (2013). Cone convergence for multiple sequences. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 62(1), 115-119. https://doi.org/10.1501/Commua1_0000000690
AMA Şahiner A. Cone convergence for multiple sequences. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2013;62(1):115-119. doi:10.1501/Commua1_0000000690
Chicago Şahiner, Ahmet. “Cone Convergence for Multiple Sequences”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 62, no. 1 (February 2013): 115-19. https://doi.org/10.1501/Commua1_0000000690.
EndNote Şahiner A (February 1, 2013) Cone convergence for multiple sequences. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 62 1 115–119.
IEEE A. Şahiner, “Cone convergence for multiple sequences”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 62, no. 1, pp. 115–119, 2013, doi: 10.1501/Commua1_0000000690.
ISNAD Şahiner, Ahmet. “Cone Convergence for Multiple Sequences”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 62/1 (February 2013), 115-119. https://doi.org/10.1501/Commua1_0000000690.
JAMA Şahiner A. Cone convergence for multiple sequences. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2013;62:115–119.
MLA Şahiner, Ahmet. “Cone Convergence for Multiple Sequences”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 62, no. 1, 2013, pp. 115-9, doi:10.1501/Commua1_0000000690.
Vancouver Şahiner A. Cone convergence for multiple sequences. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2013;62(1):115-9.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.