BibTex RIS Cite

SOME GEOMETRIC PROPERTIES OF THE DOMAIN OF THE TRIANGLE e A IN THE SEQUENCE SPACE `(p)

Year 2014, Volume: 63 Issue: 2, 163 - 176, 01.08.2014
https://doi.org/10.1501/Commua1_0000000721

References

  • [1]
  • [2] I.J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford (2) 18 (1967), 345ñ355.
  • [3] S. Simons, The sequence spaces `(pv) and m(pv), Proc. London Math. Soc. (3), 15 (1965), 422ñ436.
  • [4] H. Nakano, Modulared sequence spaces, Proc. Japan Acad. 27 (2) (1951), 508ñ512.
  • [5] A.M. Jarrah, E. Malkowsky, BK spaces, bases and linear operators, Rendiconti Circ. Mat. Palermo II 52 (1990), 177ñ191.
  • [6] B. Altay, F. Ba¸sar, On the paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math. 26 (5) (2002), 701ñ715.
  • [7] S. Chen, Geometry of Orlicz Spaces, Dissertationes Math. 356 (1996), 1ñ224.
  • [8] J. Diestel, Geometry of Banach Spaces - Selected Topics, Springer - Verlag, 1984.
  • [9] L. Maligranda, Orlicz Spaces and Interpolation, Inst. Math. Polish Academy of Sciences, Poznan,1985.
  • [10] C. Ayd¨n, F. Ba¸sar, Some generalizations of the sequence space a r p , Iran. J. Sci. Technol. Trans. A, Sci. 30 (2006), No. A2, 175ñ190.
  • [11] C. Ayd¨n, F. Ba¸sar, Some topological and geometric properties of the domain of the generalized di§ erence matrix B(r; s) in the sequence space `(p), Thai J. Math. 12 (1) (2014), 113ñ132.
  • [12] F. Ba¸sar, B. Altay, M. Mursaleen, Some generalizations of the space bvp of p-bounded variation sequences, Nonlinear Anal. 68 (2) (2008), 273ñ287.
  • [13] H. Nergiz, F. Ba¸sar, Some topological and geometric properties of the domain of the double sequential band matrix B(r; e se) in the sequence space `(p), AIP Conference Proceedings 1470 (2012), 163ñ168, doi: 10.1063/1.4747665.
  • [14] H. Nergiz, F. Ba¸sar, Some geometric properties of the domain of the double sequential band matrix B(r; e se) in the sequence space `(p), Abstr. Appl. Anal. 2013, Article ID 421031, 7 pages, 2013. doi: 10.1155/2013/421031.
  • [15] E. UÁar, F. Ba¸sar, Some geometric properties of the domain of the double band matrix deÖned by Fibonacci numbers in the sequence space `(p), AIP Conference Proceedings 1611 (2014), 316ñ324, doi: 10.1063/1.4893854.
  • [16] M. Ye¸silkayagil, F. Ba¸sar, On the paranormed Nˆrlund sequence space of non-absolute type, Abstr. Appl. Anal. 2014, Article ID 858704, 9 pages, 2014. doi:10.1155/2014/858704.
  • [17] E.E. Kara, Some topological and geometrical properties of new Banach sequence spaces, J. Inequal. Appl. 2013, 15 pages, 2013. doi:10.1186/1029-242X-2013-38.
  • [18] M. Ba¸sar¨r, F. Ba¸sar, E.E. Kara, On the spaces of Fibonacci di§ erence null and convergent sequences, arXiv:1309.0150v1 [math.FA], (2013).
Year 2014, Volume: 63 Issue: 2, 163 - 176, 01.08.2014
https://doi.org/10.1501/Commua1_0000000721

References

  • [1]
  • [2] I.J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford (2) 18 (1967), 345ñ355.
  • [3] S. Simons, The sequence spaces `(pv) and m(pv), Proc. London Math. Soc. (3), 15 (1965), 422ñ436.
  • [4] H. Nakano, Modulared sequence spaces, Proc. Japan Acad. 27 (2) (1951), 508ñ512.
  • [5] A.M. Jarrah, E. Malkowsky, BK spaces, bases and linear operators, Rendiconti Circ. Mat. Palermo II 52 (1990), 177ñ191.
  • [6] B. Altay, F. Ba¸sar, On the paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math. 26 (5) (2002), 701ñ715.
  • [7] S. Chen, Geometry of Orlicz Spaces, Dissertationes Math. 356 (1996), 1ñ224.
  • [8] J. Diestel, Geometry of Banach Spaces - Selected Topics, Springer - Verlag, 1984.
  • [9] L. Maligranda, Orlicz Spaces and Interpolation, Inst. Math. Polish Academy of Sciences, Poznan,1985.
  • [10] C. Ayd¨n, F. Ba¸sar, Some generalizations of the sequence space a r p , Iran. J. Sci. Technol. Trans. A, Sci. 30 (2006), No. A2, 175ñ190.
  • [11] C. Ayd¨n, F. Ba¸sar, Some topological and geometric properties of the domain of the generalized di§ erence matrix B(r; s) in the sequence space `(p), Thai J. Math. 12 (1) (2014), 113ñ132.
  • [12] F. Ba¸sar, B. Altay, M. Mursaleen, Some generalizations of the space bvp of p-bounded variation sequences, Nonlinear Anal. 68 (2) (2008), 273ñ287.
  • [13] H. Nergiz, F. Ba¸sar, Some topological and geometric properties of the domain of the double sequential band matrix B(r; e se) in the sequence space `(p), AIP Conference Proceedings 1470 (2012), 163ñ168, doi: 10.1063/1.4747665.
  • [14] H. Nergiz, F. Ba¸sar, Some geometric properties of the domain of the double sequential band matrix B(r; e se) in the sequence space `(p), Abstr. Appl. Anal. 2013, Article ID 421031, 7 pages, 2013. doi: 10.1155/2013/421031.
  • [15] E. UÁar, F. Ba¸sar, Some geometric properties of the domain of the double band matrix deÖned by Fibonacci numbers in the sequence space `(p), AIP Conference Proceedings 1611 (2014), 316ñ324, doi: 10.1063/1.4893854.
  • [16] M. Ye¸silkayagil, F. Ba¸sar, On the paranormed Nˆrlund sequence space of non-absolute type, Abstr. Appl. Anal. 2014, Article ID 858704, 9 pages, 2014. doi:10.1155/2014/858704.
  • [17] E.E. Kara, Some topological and geometrical properties of new Banach sequence spaces, J. Inequal. Appl. 2013, 15 pages, 2013. doi:10.1186/1029-242X-2013-38.
  • [18] M. Ba¸sar¨r, F. Ba¸sar, E.E. Kara, On the spaces of Fibonacci di§ erence null and convergent sequences, arXiv:1309.0150v1 [math.FA], (2013).
There are 18 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Esra Sümeyra Yılmaz This is me

Feyzi Başar This is me

Publication Date August 1, 2014
Published in Issue Year 2014 Volume: 63 Issue: 2

Cite

APA Yılmaz, E. S., & Başar, F. (2014). SOME GEOMETRIC PROPERTIES OF THE DOMAIN OF THE TRIANGLE e A IN THE SEQUENCE SPACE `(p). Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 63(2), 163-176. https://doi.org/10.1501/Commua1_0000000721
AMA Yılmaz ES, Başar F. SOME GEOMETRIC PROPERTIES OF THE DOMAIN OF THE TRIANGLE e A IN THE SEQUENCE SPACE `(p). Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2014;63(2):163-176. doi:10.1501/Commua1_0000000721
Chicago Yılmaz, Esra Sümeyra, and Feyzi Başar. “SOME GEOMETRIC PROPERTIES OF THE DOMAIN OF THE TRIANGLE E A IN THE SEQUENCE SPACE `(p)”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 63, no. 2 (August 2014): 163-76. https://doi.org/10.1501/Commua1_0000000721.
EndNote Yılmaz ES, Başar F (August 1, 2014) SOME GEOMETRIC PROPERTIES OF THE DOMAIN OF THE TRIANGLE e A IN THE SEQUENCE SPACE `(p). Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 63 2 163–176.
IEEE E. S. Yılmaz and F. Başar, “SOME GEOMETRIC PROPERTIES OF THE DOMAIN OF THE TRIANGLE e A IN THE SEQUENCE SPACE `(p)”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 63, no. 2, pp. 163–176, 2014, doi: 10.1501/Commua1_0000000721.
ISNAD Yılmaz, Esra Sümeyra - Başar, Feyzi. “SOME GEOMETRIC PROPERTIES OF THE DOMAIN OF THE TRIANGLE E A IN THE SEQUENCE SPACE `(p)”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 63/2 (August 2014), 163-176. https://doi.org/10.1501/Commua1_0000000721.
JAMA Yılmaz ES, Başar F. SOME GEOMETRIC PROPERTIES OF THE DOMAIN OF THE TRIANGLE e A IN THE SEQUENCE SPACE `(p). Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2014;63:163–176.
MLA Yılmaz, Esra Sümeyra and Feyzi Başar. “SOME GEOMETRIC PROPERTIES OF THE DOMAIN OF THE TRIANGLE E A IN THE SEQUENCE SPACE `(p)”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 63, no. 2, 2014, pp. 163-76, doi:10.1501/Commua1_0000000721.
Vancouver Yılmaz ES, Başar F. SOME GEOMETRIC PROPERTIES OF THE DOMAIN OF THE TRIANGLE e A IN THE SEQUENCE SPACE `(p). Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2014;63(2):163-76.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.