A. Pringsheim, Zur theorie der zweifach unend lichen Zahlenfolgen, Math. Ann. 53 (1900), –321.
J. Boos, Classical and Modern Methods in Summability, Oxford University Press Inc., New York, 2000.
F. Móricz, Extensions of the spaces c and c0from single to double sequences, Acta Math. Hungar. 57 (1991), 129–136.
F. Ba¸sar, Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monographs, ·Istanbul, 2012.
M. Mursaleen, S.A. Mohiuddine, Convergence Methods For Double Sequences and Applica- tions, Springer, New Delhi Heidelberg New York Dordrecht London, 2014.
G.H. Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc. 19 (1917), –95.
M. Unver, Characterization of multidimensional A-strong convergence, Studia Sci. Math. Hungar. 50 (1) (2013), 17–25.
F. Móricz, B.E. Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Proc. Camb. Phil. Soc. 104 (1988), 283–294.
R.F. Patterson, Four dimensional characterization of bounded double sequences, Tamkang J. Math. 35 (2004), 129–134.
I.J Maddox, Elements of Functional Analysis, Second edition, Cambridge University Press, Cambridge, 1988.
M. Ye¸silkayagil, F. Ba¸sar, Domain of Riesz mean in some spaces of double sequences, under communication. Current address : Department of Mathematics, Fatih University, The Hadımköy Campus, Büyükçekmece, 34500 ·Istanbul, Turkey
E-mail address : fbasar@fatih.edu.tr & feyzibasar@gmail.com Current address : Medine Ye¸silkayagil: Department of Mathematics, U¸sak University, 1 Eylül Campus, 64200 U¸sak, Turkey
E-mail address : medine.yesilkayagil@usak.edu.tr
Year 2016,
Volume: 65 Issue: 1, 147 - 156, 01.02.2016
A. Pringsheim, Zur theorie der zweifach unend lichen Zahlenfolgen, Math. Ann. 53 (1900), –321.
J. Boos, Classical and Modern Methods in Summability, Oxford University Press Inc., New York, 2000.
F. Móricz, Extensions of the spaces c and c0from single to double sequences, Acta Math. Hungar. 57 (1991), 129–136.
F. Ba¸sar, Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monographs, ·Istanbul, 2012.
M. Mursaleen, S.A. Mohiuddine, Convergence Methods For Double Sequences and Applica- tions, Springer, New Delhi Heidelberg New York Dordrecht London, 2014.
G.H. Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc. 19 (1917), –95.
M. Unver, Characterization of multidimensional A-strong convergence, Studia Sci. Math. Hungar. 50 (1) (2013), 17–25.
F. Móricz, B.E. Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Proc. Camb. Phil. Soc. 104 (1988), 283–294.
R.F. Patterson, Four dimensional characterization of bounded double sequences, Tamkang J. Math. 35 (2004), 129–134.
I.J Maddox, Elements of Functional Analysis, Second edition, Cambridge University Press, Cambridge, 1988.
M. Ye¸silkayagil, F. Ba¸sar, Domain of Riesz mean in some spaces of double sequences, under communication. Current address : Department of Mathematics, Fatih University, The Hadımköy Campus, Büyükçekmece, 34500 ·Istanbul, Turkey
E-mail address : fbasar@fatih.edu.tr & feyzibasar@gmail.com Current address : Medine Ye¸silkayagil: Department of Mathematics, U¸sak University, 1 Eylül Campus, 64200 U¸sak, Turkey
Yeşilkayagil, M., & Başar, F. (2016). Mercerian theorem for four dimensional matrices. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 65(1), 147-156. https://doi.org/10.1501/Commua1_0000000750
AMA
Yeşilkayagil M, Başar F. Mercerian theorem for four dimensional matrices. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2016;65(1):147-156. doi:10.1501/Commua1_0000000750
Chicago
Yeşilkayagil, Medine, and Fevzi Başar. “Mercerian Theorem for Four Dimensional Matrices”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65, no. 1 (February 2016): 147-56. https://doi.org/10.1501/Commua1_0000000750.
EndNote
Yeşilkayagil M, Başar F (February 1, 2016) Mercerian theorem for four dimensional matrices. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65 1 147–156.
IEEE
M. Yeşilkayagil and F. Başar, “Mercerian theorem for four dimensional matrices”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 65, no. 1, pp. 147–156, 2016, doi: 10.1501/Commua1_0000000750.
ISNAD
Yeşilkayagil, Medine - Başar, Fevzi. “Mercerian Theorem for Four Dimensional Matrices”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65/1 (February 2016), 147-156. https://doi.org/10.1501/Commua1_0000000750.
JAMA
Yeşilkayagil M, Başar F. Mercerian theorem for four dimensional matrices. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2016;65:147–156.
MLA
Yeşilkayagil, Medine and Fevzi Başar. “Mercerian Theorem for Four Dimensional Matrices”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 65, no. 1, 2016, pp. 147-56, doi:10.1501/Commua1_0000000750.
Vancouver
Yeşilkayagil M, Başar F. Mercerian theorem for four dimensional matrices. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2016;65(1):147-56.