Ç. Atakut and ·I. Büyükyazıcı, The rate of convergence of the q-analogue of Favard-Szasz type operators, Journal of Comp. Ana. and App., 13, 4 (2011), 673-682.
Ç. Atakut, ·I. Büyükyazıcı, Stancu type generalization of the Favard-Szàsz operators, Appl. Math. Letters, 23(12) (2010), 1479-1482 .
A. Aral, A generalization of Szasz-Mirakyan operators based on q-integers, Mathematical and Computer Modelling, 47, (2008), 1052-1062.
A. Aral and V. Gupta, The q-derivative and applications to q-Szasz Mirakyan operators, Calcolo, 43, (2006), 151-170
D. Aydin Ari and S. Kirci Serenbay, Approximation by a generalization of the Jakimovski- Leviatan operators, arXiv:1510.08819v1 20 Oct. 2015.
A. Ciupa, On a generalized Favard-Szasz type operator, Seminar on Numerical ans Statistical Calculus, Univ. Babe¸s-Bolyai Cluj-Napoca, preprint nr.1 (1994), 33-38.
·I. Büyükyazıcı, H. Tanberkan, S. Kirci Serenbay, Ç. Atakut, Approximation by Chlodowsky type Jakimovski-Leviatan operators, J. Comp. and App. Math., 259, (2014), 153-163.
A. Jakimovski, D. Leviatan, General Szasz operators for the approximation in the in…nite interval, Mathematica (Cluj), 34, (1969), 97-103.
A. Karaisa, D. T. Tollu and Y. Asar. Stancu type generalization of q-Favard–Szàsz operators, Applied Mathematics and Computation 264 (2015): 249-257. A. Karaisa, Choldowsky arXiv:1505.06904v1 [math.CA] 26 May 2015. type generalization of the q-Favard Szàsz operators
A. Lupa¸s, A q-analogue of the Bernstein operators, University of Cluj-Napoca, Seminar on Numerical andstatistical calculus, 9, 1987.
P. Sharma, V.N. Mishra, Weighted Approximation theorem for Choldowsky generalization of the q-Favard-Sz´ asz operators, arXiv:1510.03408 [math.CA] 7 Oct 2015.
Z. Pavi´c, J. Peµcari´c, A. Vukeli´c, Means for divided diğerences and exponential convexity, Mediterr. J. Math., 9(1), (2012), 187-198.
G. M. Philips, Bernstein Polynomials based on q-integers. Ann. Numer.Math., 4, (1997), –518.
S. Sucu and S.Varma, Generalization of Jakimovski- Leviatan type Szasz operators, Applied Mathematics and Computation 270, (2015), 977-983.
Current address : Ba¸skent University, Faculty of Education, Department of Mathematics Ed- ucation, Ankara, Turkey E-mail address : ozgedalmanoglu@gmail.com Current address : Ba¸skent University, Faculty of Education, Department of Mathematics Ed- ucation, Ankara, Turkey E-mail address : sevilaykirci@gmail.com
Year 2016,
Volume: 65 Issue: 1, 157 - 170, 01.02.2016
Ç. Atakut and ·I. Büyükyazıcı, The rate of convergence of the q-analogue of Favard-Szasz type operators, Journal of Comp. Ana. and App., 13, 4 (2011), 673-682.
Ç. Atakut, ·I. Büyükyazıcı, Stancu type generalization of the Favard-Szàsz operators, Appl. Math. Letters, 23(12) (2010), 1479-1482 .
A. Aral, A generalization of Szasz-Mirakyan operators based on q-integers, Mathematical and Computer Modelling, 47, (2008), 1052-1062.
A. Aral and V. Gupta, The q-derivative and applications to q-Szasz Mirakyan operators, Calcolo, 43, (2006), 151-170
D. Aydin Ari and S. Kirci Serenbay, Approximation by a generalization of the Jakimovski- Leviatan operators, arXiv:1510.08819v1 20 Oct. 2015.
A. Ciupa, On a generalized Favard-Szasz type operator, Seminar on Numerical ans Statistical Calculus, Univ. Babe¸s-Bolyai Cluj-Napoca, preprint nr.1 (1994), 33-38.
·I. Büyükyazıcı, H. Tanberkan, S. Kirci Serenbay, Ç. Atakut, Approximation by Chlodowsky type Jakimovski-Leviatan operators, J. Comp. and App. Math., 259, (2014), 153-163.
A. Jakimovski, D. Leviatan, General Szasz operators for the approximation in the in…nite interval, Mathematica (Cluj), 34, (1969), 97-103.
A. Karaisa, D. T. Tollu and Y. Asar. Stancu type generalization of q-Favard–Szàsz operators, Applied Mathematics and Computation 264 (2015): 249-257. A. Karaisa, Choldowsky arXiv:1505.06904v1 [math.CA] 26 May 2015. type generalization of the q-Favard Szàsz operators
A. Lupa¸s, A q-analogue of the Bernstein operators, University of Cluj-Napoca, Seminar on Numerical andstatistical calculus, 9, 1987.
P. Sharma, V.N. Mishra, Weighted Approximation theorem for Choldowsky generalization of the q-Favard-Sz´ asz operators, arXiv:1510.03408 [math.CA] 7 Oct 2015.
Z. Pavi´c, J. Peµcari´c, A. Vukeli´c, Means for divided diğerences and exponential convexity, Mediterr. J. Math., 9(1), (2012), 187-198.
G. M. Philips, Bernstein Polynomials based on q-integers. Ann. Numer.Math., 4, (1997), –518.
S. Sucu and S.Varma, Generalization of Jakimovski- Leviatan type Szasz operators, Applied Mathematics and Computation 270, (2015), 977-983.
Current address : Ba¸skent University, Faculty of Education, Department of Mathematics Ed- ucation, Ankara, Turkey E-mail address : ozgedalmanoglu@gmail.com Current address : Ba¸skent University, Faculty of Education, Department of Mathematics Ed- ucation, Ankara, Turkey E-mail address : sevilaykirci@gmail.com
Dalmanoğlu, Ö., & Kırcı Serenbay, S. (2016). APPROXIMATION BY CHLODOWSKY TYPE q-JAKIMOVSKI-LEVIATAN OPERATORS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 65(1), 157-170. https://doi.org/10.1501/Commua1_0000000751
AMA
Dalmanoğlu Ö, Kırcı Serenbay S. APPROXIMATION BY CHLODOWSKY TYPE q-JAKIMOVSKI-LEVIATAN OPERATORS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2016;65(1):157-170. doi:10.1501/Commua1_0000000751
Chicago
Dalmanoğlu, Özge, and Sevilay Kırcı Serenbay. “APPROXIMATION BY CHLODOWSKY TYPE Q-JAKIMOVSKI-LEVIATAN OPERATORS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65, no. 1 (February 2016): 157-70. https://doi.org/10.1501/Commua1_0000000751.
EndNote
Dalmanoğlu Ö, Kırcı Serenbay S (February 1, 2016) APPROXIMATION BY CHLODOWSKY TYPE q-JAKIMOVSKI-LEVIATAN OPERATORS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65 1 157–170.
IEEE
Ö. Dalmanoğlu and S. Kırcı Serenbay, “APPROXIMATION BY CHLODOWSKY TYPE q-JAKIMOVSKI-LEVIATAN OPERATORS”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 65, no. 1, pp. 157–170, 2016, doi: 10.1501/Commua1_0000000751.
ISNAD
Dalmanoğlu, Özge - Kırcı Serenbay, Sevilay. “APPROXIMATION BY CHLODOWSKY TYPE Q-JAKIMOVSKI-LEVIATAN OPERATORS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65/1 (February 2016), 157-170. https://doi.org/10.1501/Commua1_0000000751.
JAMA
Dalmanoğlu Ö, Kırcı Serenbay S. APPROXIMATION BY CHLODOWSKY TYPE q-JAKIMOVSKI-LEVIATAN OPERATORS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2016;65:157–170.
MLA
Dalmanoğlu, Özge and Sevilay Kırcı Serenbay. “APPROXIMATION BY CHLODOWSKY TYPE Q-JAKIMOVSKI-LEVIATAN OPERATORS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 65, no. 1, 2016, pp. 157-70, doi:10.1501/Commua1_0000000751.
Vancouver
Dalmanoğlu Ö, Kırcı Serenbay S. APPROXIMATION BY CHLODOWSKY TYPE q-JAKIMOVSKI-LEVIATAN OPERATORS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2016;65(1):157-70.