BibTex RIS Cite

APPROXIMATION BY CHLODOWSKY TYPE q-JAKIMOVSKI-LEVIATAN OPERATORS

Year 2016, Volume: 65 Issue: 1, 157 - 170, 01.02.2016
https://doi.org/10.1501/Commua1_0000000751

References

  • Ç. Atakut and ·I. Büyükyazıcı, The rate of convergence of the q-analogue of Favard-Szasz type operators, Journal of Comp. Ana. and App., 13, 4 (2011), 673-682.
  • Ç. Atakut, ·I. Büyükyazıcı, Stancu type generalization of the Favard-Szàsz operators, Appl. Math. Letters, 23(12) (2010), 1479-1482 .
  • A. Aral, A generalization of Szasz-Mirakyan operators based on q-integers, Mathematical and Computer Modelling, 47, (2008), 1052-1062.
  • A. Aral and V. Gupta, The q-derivative and applications to q-Szasz Mirakyan operators, Calcolo, 43, (2006), 151-170
  • D. Aydin Ari and S. Kirci Serenbay, Approximation by a generalization of the Jakimovski- Leviatan operators, arXiv:1510.08819v1 20 Oct. 2015.
  • A. Ciupa, On a generalized Favard-Szasz type operator, Seminar on Numerical ans Statistical Calculus, Univ. Babe¸s-Bolyai Cluj-Napoca, preprint nr.1 (1994), 33-38.
  • ·I. Büyükyazıcı, H. Tanberkan, S. Kirci Serenbay, Ç. Atakut, Approximation by Chlodowsky type Jakimovski-Leviatan operators, J. Comp. and App. Math., 259, (2014), 153-163.
  • A. Jakimovski, D. Leviatan, General Szasz operators for the approximation in the in…nite interval, Mathematica (Cluj), 34, (1969), 97-103.
  • A. Karaisa, D. T. Tollu and Y. Asar. Stancu type generalization of q-Favard–Szàsz operators, Applied Mathematics and Computation 264 (2015): 249-257. A. Karaisa, Choldowsky arXiv:1505.06904v1 [math.CA] 26 May 2015. type generalization of the q-Favard Szàsz operators
  • A. Lupa¸s, A q-analogue of the Bernstein operators, University of Cluj-Napoca, Seminar on Numerical andstatistical calculus, 9, 1987.
  • P. Sharma, V.N. Mishra, Weighted Approximation theorem for Choldowsky generalization of the q-Favard-Sz´ asz operators, arXiv:1510.03408 [math.CA] 7 Oct 2015.
  • Z. Pavi´c, J. Peµcari´c, A. Vukeli´c, Means for divided diğerences and exponential convexity, Mediterr. J. Math., 9(1), (2012), 187-198.
  • G. M. Philips, Bernstein Polynomials based on q-integers. Ann. Numer.Math., 4, (1997), –518.
  • S. Sucu and S.Varma, Generalization of Jakimovski- Leviatan type Szasz operators, Applied Mathematics and Computation 270, (2015), 977-983.
  • Current address : Ba¸skent University, Faculty of Education, Department of Mathematics Ed- ucation, Ankara, Turkey E-mail address : ozgedalmanoglu@gmail.com Current address : Ba¸skent University, Faculty of Education, Department of Mathematics Ed- ucation, Ankara, Turkey E-mail address : sevilaykirci@gmail.com
Year 2016, Volume: 65 Issue: 1, 157 - 170, 01.02.2016
https://doi.org/10.1501/Commua1_0000000751

References

  • Ç. Atakut and ·I. Büyükyazıcı, The rate of convergence of the q-analogue of Favard-Szasz type operators, Journal of Comp. Ana. and App., 13, 4 (2011), 673-682.
  • Ç. Atakut, ·I. Büyükyazıcı, Stancu type generalization of the Favard-Szàsz operators, Appl. Math. Letters, 23(12) (2010), 1479-1482 .
  • A. Aral, A generalization of Szasz-Mirakyan operators based on q-integers, Mathematical and Computer Modelling, 47, (2008), 1052-1062.
  • A. Aral and V. Gupta, The q-derivative and applications to q-Szasz Mirakyan operators, Calcolo, 43, (2006), 151-170
  • D. Aydin Ari and S. Kirci Serenbay, Approximation by a generalization of the Jakimovski- Leviatan operators, arXiv:1510.08819v1 20 Oct. 2015.
  • A. Ciupa, On a generalized Favard-Szasz type operator, Seminar on Numerical ans Statistical Calculus, Univ. Babe¸s-Bolyai Cluj-Napoca, preprint nr.1 (1994), 33-38.
  • ·I. Büyükyazıcı, H. Tanberkan, S. Kirci Serenbay, Ç. Atakut, Approximation by Chlodowsky type Jakimovski-Leviatan operators, J. Comp. and App. Math., 259, (2014), 153-163.
  • A. Jakimovski, D. Leviatan, General Szasz operators for the approximation in the in…nite interval, Mathematica (Cluj), 34, (1969), 97-103.
  • A. Karaisa, D. T. Tollu and Y. Asar. Stancu type generalization of q-Favard–Szàsz operators, Applied Mathematics and Computation 264 (2015): 249-257. A. Karaisa, Choldowsky arXiv:1505.06904v1 [math.CA] 26 May 2015. type generalization of the q-Favard Szàsz operators
  • A. Lupa¸s, A q-analogue of the Bernstein operators, University of Cluj-Napoca, Seminar on Numerical andstatistical calculus, 9, 1987.
  • P. Sharma, V.N. Mishra, Weighted Approximation theorem for Choldowsky generalization of the q-Favard-Sz´ asz operators, arXiv:1510.03408 [math.CA] 7 Oct 2015.
  • Z. Pavi´c, J. Peµcari´c, A. Vukeli´c, Means for divided diğerences and exponential convexity, Mediterr. J. Math., 9(1), (2012), 187-198.
  • G. M. Philips, Bernstein Polynomials based on q-integers. Ann. Numer.Math., 4, (1997), –518.
  • S. Sucu and S.Varma, Generalization of Jakimovski- Leviatan type Szasz operators, Applied Mathematics and Computation 270, (2015), 977-983.
  • Current address : Ba¸skent University, Faculty of Education, Department of Mathematics Ed- ucation, Ankara, Turkey E-mail address : ozgedalmanoglu@gmail.com Current address : Ba¸skent University, Faculty of Education, Department of Mathematics Ed- ucation, Ankara, Turkey E-mail address : sevilaykirci@gmail.com
There are 15 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Özge Dalmanoğlu This is me

Sevilay Kırcı Serenbay This is me

Publication Date February 1, 2016
Published in Issue Year 2016 Volume: 65 Issue: 1

Cite

APA Dalmanoğlu, Ö., & Kırcı Serenbay, S. (2016). APPROXIMATION BY CHLODOWSKY TYPE q-JAKIMOVSKI-LEVIATAN OPERATORS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 65(1), 157-170. https://doi.org/10.1501/Commua1_0000000751
AMA Dalmanoğlu Ö, Kırcı Serenbay S. APPROXIMATION BY CHLODOWSKY TYPE q-JAKIMOVSKI-LEVIATAN OPERATORS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2016;65(1):157-170. doi:10.1501/Commua1_0000000751
Chicago Dalmanoğlu, Özge, and Sevilay Kırcı Serenbay. “APPROXIMATION BY CHLODOWSKY TYPE Q-JAKIMOVSKI-LEVIATAN OPERATORS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65, no. 1 (February 2016): 157-70. https://doi.org/10.1501/Commua1_0000000751.
EndNote Dalmanoğlu Ö, Kırcı Serenbay S (February 1, 2016) APPROXIMATION BY CHLODOWSKY TYPE q-JAKIMOVSKI-LEVIATAN OPERATORS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65 1 157–170.
IEEE Ö. Dalmanoğlu and S. Kırcı Serenbay, “APPROXIMATION BY CHLODOWSKY TYPE q-JAKIMOVSKI-LEVIATAN OPERATORS”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 65, no. 1, pp. 157–170, 2016, doi: 10.1501/Commua1_0000000751.
ISNAD Dalmanoğlu, Özge - Kırcı Serenbay, Sevilay. “APPROXIMATION BY CHLODOWSKY TYPE Q-JAKIMOVSKI-LEVIATAN OPERATORS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65/1 (February 2016), 157-170. https://doi.org/10.1501/Commua1_0000000751.
JAMA Dalmanoğlu Ö, Kırcı Serenbay S. APPROXIMATION BY CHLODOWSKY TYPE q-JAKIMOVSKI-LEVIATAN OPERATORS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2016;65:157–170.
MLA Dalmanoğlu, Özge and Sevilay Kırcı Serenbay. “APPROXIMATION BY CHLODOWSKY TYPE Q-JAKIMOVSKI-LEVIATAN OPERATORS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 65, no. 1, 2016, pp. 157-70, doi:10.1501/Commua1_0000000751.
Vancouver Dalmanoğlu Ö, Kırcı Serenbay S. APPROXIMATION BY CHLODOWSKY TYPE q-JAKIMOVSKI-LEVIATAN OPERATORS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2016;65(1):157-70.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.