Freiling, G. Yurko, V.A Inverse Sturm-Liouville Problems and their Applications Nova Sci- ence, New York, 2001.
Ambarzumjan V.A., Über eine Erage der Eigenwerttheorie, Z. Phys 53 (1929), 690-695.
Borg, G., Eine Umkehrung der Sturm-Liouvillschen Eigenwertaufgabe. Bestimmung der Diğerantial-gleichung durch die Eigenwerte, Acta Math. 78, No: 2 (1945), 1-96.
Tikhonov,A. N., On the uniqueness of the solution of the problem of electromagnetic sounding, Dokl. Akad. Nauk SSSR 69 (1949), 797-800.
Marchenko V.A. Sturm-Liouville Operators and Applications, Birhkaüser, Basel, 1886.
Krein, M.G., Solution of the inverse Sturm-Liouville problem, Dokl. Akad. Nauk SSSR 76 (1951), 21-24.
Gel’fand, I.M., and B.M. Levitan, On the determination of a diğerential equation by its spectral function, Izv. Akad. Nauk SSSR Ser. Mat.15, 1951.
Hochstadt, H. and Lieberman, B. An Inverse Sturm-Liouville Problem with Mixed Given Data, SIAM J. Appl. Math., V.34, (1978), 676-680 .
Gesztesy, F., Simon. B. Inverse Spectral Analysis with Partial Information on the Potential. II: The Case of Discrete Spectrum, Trans. Amer. Math. Soc., V.352, (2000), 2765-2787.
Gasımov, Z.M., Inverse problem with two spectra for a singular Sturm-Liouville equation Dokl. RAN, V 365, No:3,(1999), 304-305.
Gasımov, Z.M., On the determination of the Singular Sturm Liouville diğerential equation, Academic Congress of Kravchcuk Kiev 1992.
Carlson, R. Inverse Spectral Theory for Some Singular Sturm-Liouville problems, Jour. of Dif. Eq., V.106, (1993),121-140.
Courant, R. and Hilbert, D. Methods of Mathematical Physics, New York, 1953.
Malamud, M.M. Uniqueness Questions in Inverse Problems for Systems of Diğerential Equa- tions on a Finite Interval, Trans. Moscow Math. Soc., V.60, (1999), 204-262.
Sakhnovich, L. Half-Inverse Problems on the Finite Interval, Inverse Problems, V.17, (2001), 532.
Panakhov., E. S. and Yilmazer, R. “A Hochstadt–Lieberman theorem for hydrogen atom equation,” Int. J. Appl. Comput. Math., 11. (2012), 74-80.
Bairamov, E., Çakar, Ö., Krall A. M. An Eigenfunction Expansion for a Quadratic Pencil of a Schrödinger Operator with Spectral Singularities, J. of Diğerential Equations, V. 151- ,(1999), 268-289.
Bairamov, E., Aygar, Y., Koprubasi, T. The spectrum of eigenparameter-dependent discrete Sturm–Liouville equations, J. of Comp. and Appl. Math. V. 235-16, (2011), 4519-4523.
Gasımov, Z.M., Solved Inverse Problems for Singular Sturm Liouville Diğerential Equation from two spectra, Baku State University. Phd, thesis, 1992.
Volk, V.Y. On Inverse Formulas for a Diğerential Equation with a Singularity at . Usp. Mat. Nauk (N.S), V.56, N.8, (1953),141-151.
Carothers, N.L., Real Analysis Cambridge University, Newyork, 2000.
Current address : Department of Mathematics, Firat University, 23119 Elazig/Turkey
E-mail address : erdalmat@yahoo.com
Year 2016,
Volume: 65 Issue: 2, 89 - 96, 01.08.2016
Freiling, G. Yurko, V.A Inverse Sturm-Liouville Problems and their Applications Nova Sci- ence, New York, 2001.
Ambarzumjan V.A., Über eine Erage der Eigenwerttheorie, Z. Phys 53 (1929), 690-695.
Borg, G., Eine Umkehrung der Sturm-Liouvillschen Eigenwertaufgabe. Bestimmung der Diğerantial-gleichung durch die Eigenwerte, Acta Math. 78, No: 2 (1945), 1-96.
Tikhonov,A. N., On the uniqueness of the solution of the problem of electromagnetic sounding, Dokl. Akad. Nauk SSSR 69 (1949), 797-800.
Marchenko V.A. Sturm-Liouville Operators and Applications, Birhkaüser, Basel, 1886.
Krein, M.G., Solution of the inverse Sturm-Liouville problem, Dokl. Akad. Nauk SSSR 76 (1951), 21-24.
Gel’fand, I.M., and B.M. Levitan, On the determination of a diğerential equation by its spectral function, Izv. Akad. Nauk SSSR Ser. Mat.15, 1951.
Hochstadt, H. and Lieberman, B. An Inverse Sturm-Liouville Problem with Mixed Given Data, SIAM J. Appl. Math., V.34, (1978), 676-680 .
Gesztesy, F., Simon. B. Inverse Spectral Analysis with Partial Information on the Potential. II: The Case of Discrete Spectrum, Trans. Amer. Math. Soc., V.352, (2000), 2765-2787.
Gasımov, Z.M., Inverse problem with two spectra for a singular Sturm-Liouville equation Dokl. RAN, V 365, No:3,(1999), 304-305.
Gasımov, Z.M., On the determination of the Singular Sturm Liouville diğerential equation, Academic Congress of Kravchcuk Kiev 1992.
Carlson, R. Inverse Spectral Theory for Some Singular Sturm-Liouville problems, Jour. of Dif. Eq., V.106, (1993),121-140.
Courant, R. and Hilbert, D. Methods of Mathematical Physics, New York, 1953.
Malamud, M.M. Uniqueness Questions in Inverse Problems for Systems of Diğerential Equa- tions on a Finite Interval, Trans. Moscow Math. Soc., V.60, (1999), 204-262.
Sakhnovich, L. Half-Inverse Problems on the Finite Interval, Inverse Problems, V.17, (2001), 532.
Panakhov., E. S. and Yilmazer, R. “A Hochstadt–Lieberman theorem for hydrogen atom equation,” Int. J. Appl. Comput. Math., 11. (2012), 74-80.
Bairamov, E., Çakar, Ö., Krall A. M. An Eigenfunction Expansion for a Quadratic Pencil of a Schrödinger Operator with Spectral Singularities, J. of Diğerential Equations, V. 151- ,(1999), 268-289.
Bairamov, E., Aygar, Y., Koprubasi, T. The spectrum of eigenparameter-dependent discrete Sturm–Liouville equations, J. of Comp. and Appl. Math. V. 235-16, (2011), 4519-4523.
Gasımov, Z.M., Solved Inverse Problems for Singular Sturm Liouville Diğerential Equation from two spectra, Baku State University. Phd, thesis, 1992.
Volk, V.Y. On Inverse Formulas for a Diğerential Equation with a Singularity at . Usp. Mat. Nauk (N.S), V.56, N.8, (1953),141-151.
Carothers, N.L., Real Analysis Cambridge University, Newyork, 2000.
Current address : Department of Mathematics, Firat University, 23119 Elazig/Turkey
Bas, E. (2016). Inverse singular spectral problem via Hocshtadt-Lieberman method. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 65(2), 89-96. https://doi.org/10.1501/Commua1_0000000762
AMA
Bas E. Inverse singular spectral problem via Hocshtadt-Lieberman method. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2016;65(2):89-96. doi:10.1501/Commua1_0000000762
Chicago
Bas, Erdal. “Inverse Singular Spectral Problem via Hocshtadt-Lieberman Method”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65, no. 2 (August 2016): 89-96. https://doi.org/10.1501/Commua1_0000000762.
EndNote
Bas E (August 1, 2016) Inverse singular spectral problem via Hocshtadt-Lieberman method. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65 2 89–96.
IEEE
E. Bas, “Inverse singular spectral problem via Hocshtadt-Lieberman method”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 65, no. 2, pp. 89–96, 2016, doi: 10.1501/Commua1_0000000762.
ISNAD
Bas, Erdal. “Inverse Singular Spectral Problem via Hocshtadt-Lieberman Method”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65/2 (August 2016), 89-96. https://doi.org/10.1501/Commua1_0000000762.
JAMA
Bas E. Inverse singular spectral problem via Hocshtadt-Lieberman method. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2016;65:89–96.
MLA
Bas, Erdal. “Inverse Singular Spectral Problem via Hocshtadt-Lieberman Method”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 65, no. 2, 2016, pp. 89-96, doi:10.1501/Commua1_0000000762.
Vancouver
Bas E. Inverse singular spectral problem via Hocshtadt-Lieberman method. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2016;65(2):89-96.