BibTex RIS Cite

SOME APPROXIMATION PROPERTIES OF KANTOROVICH VARIANT OF CHLODOWSKY OPERATORS BASED ON q INTEGER

Year 2016, Volume: 65 Issue: 2, 97 - 120, 01.08.2016
https://doi.org/10.1501/Commua1_0000000763

Abstract

In this paper, we introduce two diğerent Kantorovich type generalization of the q Chlodowsky operators. For the first operators we give some weighted approximation theorems and a Voronovskaja type theorem. Also, we present the local approximation properties and the order of convergence forunbounded functions of these operators . For second operators, we obtain aweighted statistical approximation property

References

  • Aral A., Gupta V., Agarwal R. P., Applications of q Calculus in Operator Theory, Springer, New York, 2013.
  • Kac V., Cheung P., Quantum Calculus, Springer, New York, 2002.
  • Karsli H., Gupta V., Some approximation properties of q Chlodowsky operators, Appl. Math. Comput. (2008), 195, 220–229.
  • Karaisa A., Approximation by Durrmeyer type Jakimoski–Leviatan operators, Math. Meth- ods Appl. Sci. (2015), In Press, DOI 10.1002/mma.3650.
  • Karaisa A., Tollu D. T., Asar Y., Stancu type generalization of q-Favard-Szàsz operators, Appl. Math. Comput. (2015), 264, 249–257.
  • Aral A., Gupta V., Generalized q Baskakov operators, Math.Slovaca (2011), 61, 619–634.
  • Aral A., A generalization of Szàsz-Mirakyan operators based on q integers, Math. Comput. Model. (2008), 47, 1052–1062.
  • Gadjieva E. A., ·Ibikli E., Weighted approximation by Bernstein-Chlodowsky polynomials, Indian J. Pure. Appl. Math. (1999), 30 (1), 83–87.
  • Büyükyazıcı ·I., Approximation by Stancu–Chlodowsky polynomials, Comput. Math. Appl. (2010), 59, 274–282.
  • Yüksel ·I., Dinlemez Ü., Voronovskaja type approximation theorem for q Szàsz–Beta opera- tors, Appl. Math. Comput. (2014), 235, 555–559.
  • Jackson F.H., On the q de…nite integrals, Quart. J. Pure Appl. Math. (1910), 41, 193–203.
  • Altomare F., Campiti M., Korovkin-type Approximation Theory and its Applications. Vol. Walter de Gruyter, 1994.
  • Dalmano¼glu Ö., Do¼gru O., On statistical approximation properties of Kantorovich type qBernstein operators, Math. Comput. Model. (2010), 52, 760–771.
  • Fast H., Sur la convergence statistique, Colloq Math. (1951), 2, 241–244.
  • Gadjiev A.D., Theorems of the type of P. P. Korovkin type theorems, Math. Zametki. (1976) , 781–786.
  • Gadjiev A.D., Orhan C., Some approximation properties via statistical convergence, Rocky Mountain J. Math. (2002), 32, 129–138.
  • Gauchman H., Integral inequalities in q calculus. Comput Math. Appl. (2004), 47, 281–300.
  • Ispir N., On modi…ed Baskakov operators on weighted spaces, Turk. J. Math. (2001), 26, –365.
  • Lorentz G.G., Bernstein Polynomials, Toronto, Canada, University of Toronto Press, 1953.
  • Marinkovi S., Rajkovi P., Stankovi M., The inequalities for some types of q integrals, Com- put. Math. Appl. (2008), 56, 2490–2498.
  • Phillips G.M., Bernstein polynomials based on the q integers. Ann. Numer. Math. (1997), , 511–518.
  • Steinhaus H., Sur la convergence ordinaire et la convergence asymptotique, Colloq Math. (1951) 2, 73–74.
  • Current address : A. Karaisa, Department of Mathematics–Computer Sciences, Necmettin Erbakan University, 42090 Meram, Konya, Turkey
  • E-mail address : akaraisa@konya.edu.tr, alikaraisa@hotmail.com Current address : A. Aral, Department of Mathematics, Kırıkkale University,71450 Yah¸sihan, Kırıkkale, Turkey
  • E-mail address : aliaral73@yahoo.com
Year 2016, Volume: 65 Issue: 2, 97 - 120, 01.08.2016
https://doi.org/10.1501/Commua1_0000000763

Abstract

References

  • Aral A., Gupta V., Agarwal R. P., Applications of q Calculus in Operator Theory, Springer, New York, 2013.
  • Kac V., Cheung P., Quantum Calculus, Springer, New York, 2002.
  • Karsli H., Gupta V., Some approximation properties of q Chlodowsky operators, Appl. Math. Comput. (2008), 195, 220–229.
  • Karaisa A., Approximation by Durrmeyer type Jakimoski–Leviatan operators, Math. Meth- ods Appl. Sci. (2015), In Press, DOI 10.1002/mma.3650.
  • Karaisa A., Tollu D. T., Asar Y., Stancu type generalization of q-Favard-Szàsz operators, Appl. Math. Comput. (2015), 264, 249–257.
  • Aral A., Gupta V., Generalized q Baskakov operators, Math.Slovaca (2011), 61, 619–634.
  • Aral A., A generalization of Szàsz-Mirakyan operators based on q integers, Math. Comput. Model. (2008), 47, 1052–1062.
  • Gadjieva E. A., ·Ibikli E., Weighted approximation by Bernstein-Chlodowsky polynomials, Indian J. Pure. Appl. Math. (1999), 30 (1), 83–87.
  • Büyükyazıcı ·I., Approximation by Stancu–Chlodowsky polynomials, Comput. Math. Appl. (2010), 59, 274–282.
  • Yüksel ·I., Dinlemez Ü., Voronovskaja type approximation theorem for q Szàsz–Beta opera- tors, Appl. Math. Comput. (2014), 235, 555–559.
  • Jackson F.H., On the q de…nite integrals, Quart. J. Pure Appl. Math. (1910), 41, 193–203.
  • Altomare F., Campiti M., Korovkin-type Approximation Theory and its Applications. Vol. Walter de Gruyter, 1994.
  • Dalmano¼glu Ö., Do¼gru O., On statistical approximation properties of Kantorovich type qBernstein operators, Math. Comput. Model. (2010), 52, 760–771.
  • Fast H., Sur la convergence statistique, Colloq Math. (1951), 2, 241–244.
  • Gadjiev A.D., Theorems of the type of P. P. Korovkin type theorems, Math. Zametki. (1976) , 781–786.
  • Gadjiev A.D., Orhan C., Some approximation properties via statistical convergence, Rocky Mountain J. Math. (2002), 32, 129–138.
  • Gauchman H., Integral inequalities in q calculus. Comput Math. Appl. (2004), 47, 281–300.
  • Ispir N., On modi…ed Baskakov operators on weighted spaces, Turk. J. Math. (2001), 26, –365.
  • Lorentz G.G., Bernstein Polynomials, Toronto, Canada, University of Toronto Press, 1953.
  • Marinkovi S., Rajkovi P., Stankovi M., The inequalities for some types of q integrals, Com- put. Math. Appl. (2008), 56, 2490–2498.
  • Phillips G.M., Bernstein polynomials based on the q integers. Ann. Numer. Math. (1997), , 511–518.
  • Steinhaus H., Sur la convergence ordinaire et la convergence asymptotique, Colloq Math. (1951) 2, 73–74.
  • Current address : A. Karaisa, Department of Mathematics–Computer Sciences, Necmettin Erbakan University, 42090 Meram, Konya, Turkey
  • E-mail address : akaraisa@konya.edu.tr, alikaraisa@hotmail.com Current address : A. Aral, Department of Mathematics, Kırıkkale University,71450 Yah¸sihan, Kırıkkale, Turkey
  • E-mail address : aliaral73@yahoo.com
There are 25 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Ali Karaısa This is me

Ali Aral This is me

Publication Date August 1, 2016
Published in Issue Year 2016 Volume: 65 Issue: 2

Cite

APA Karaısa, A., & Aral, A. (2016). SOME APPROXIMATION PROPERTIES OF KANTOROVICH VARIANT OF CHLODOWSKY OPERATORS BASED ON q INTEGER. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 65(2), 97-120. https://doi.org/10.1501/Commua1_0000000763
AMA Karaısa A, Aral A. SOME APPROXIMATION PROPERTIES OF KANTOROVICH VARIANT OF CHLODOWSKY OPERATORS BASED ON q INTEGER. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2016;65(2):97-120. doi:10.1501/Commua1_0000000763
Chicago Karaısa, Ali, and Ali Aral. “SOME APPROXIMATION PROPERTIES OF KANTOROVICH VARIANT OF CHLODOWSKY OPERATORS BASED ON Q INTEGER”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65, no. 2 (August 2016): 97-120. https://doi.org/10.1501/Commua1_0000000763.
EndNote Karaısa A, Aral A (August 1, 2016) SOME APPROXIMATION PROPERTIES OF KANTOROVICH VARIANT OF CHLODOWSKY OPERATORS BASED ON q INTEGER. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65 2 97–120.
IEEE A. Karaısa and A. Aral, “SOME APPROXIMATION PROPERTIES OF KANTOROVICH VARIANT OF CHLODOWSKY OPERATORS BASED ON q INTEGER”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 65, no. 2, pp. 97–120, 2016, doi: 10.1501/Commua1_0000000763.
ISNAD Karaısa, Ali - Aral, Ali. “SOME APPROXIMATION PROPERTIES OF KANTOROVICH VARIANT OF CHLODOWSKY OPERATORS BASED ON Q INTEGER”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65/2 (August 2016), 97-120. https://doi.org/10.1501/Commua1_0000000763.
JAMA Karaısa A, Aral A. SOME APPROXIMATION PROPERTIES OF KANTOROVICH VARIANT OF CHLODOWSKY OPERATORS BASED ON q INTEGER. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2016;65:97–120.
MLA Karaısa, Ali and Ali Aral. “SOME APPROXIMATION PROPERTIES OF KANTOROVICH VARIANT OF CHLODOWSKY OPERATORS BASED ON Q INTEGER”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 65, no. 2, 2016, pp. 97-120, doi:10.1501/Commua1_0000000763.
Vancouver Karaısa A, Aral A. SOME APPROXIMATION PROPERTIES OF KANTOROVICH VARIANT OF CHLODOWSKY OPERATORS BASED ON q INTEGER. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2016;65(2):97-120.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.