BibTex RIS Cite

MAGNETIC NON-NULL CURVES ACCORDING TO PARALLEL TRANSPORT FRAME IN MINKOWSKI 3-SPACE

Year 2018, Volume: 67 Issue: 1, 147 - 160, 01.02.2018
https://doi.org/10.1501/Commua1_0000000838

References

  • Barros, M., Cabrerizo, J.L., Fernandez, M. and Romero A., Magnetic vortex …lament *ows, J Math Phys, 48, (2007), 1-27.
  • Bishop, R.L., There is more than one way to frame a curve, Amer. Math. Monthly, 82(3), (1975), 246–251.
  • Büyükkütük, S. and Öztürk, G., Constant Ratio Curves According to Bishop Frame in Euclid- ean 3-Space E3, Gen. Math. Notes, 28(1), (2015), 81-91.
  • Calin, C. and Crasmareanu, M., Magnetic Curves in Three-Dimensional Quasi-Para-Sasakian Geometry, Mediterr. J. Math., DOI 10.1007/s00009-015-0570-y, (2015).
  • Druta-Romaniuc, S.L., Inoguchi, J-I., Munteanu, M.I. and Nistor, A.I., Magnetic Curves in Sasakian Manifolds, Journal of Nonlinear Mathematical Physics, 22(3), (2015), 428-447.
  • Druta-Romaniuc, S.L. and Munteanu, M.I., Killing magnetic curves in a Minkowski 3-space, Nonlinear Analysis: Real World Applications, 14, (2013), 383-396.
  • Duggal, K. L. and Jin, D.H., Null Curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scienti…c Publishing, 2007.
  • Inoguchi, J-I. and Munteanu, M.I., Periodic Magnetic Curves in Elliptic Sasakian Space Forms, arXiv:1310.2899v1 [math.DG], (2013).
  • Jleli, M., Munteanu, M.I. and Nistor, A.I., Magnetic Trajectories in an Almost Contact Metric Manifold R2N +1, Results. Math., 67, (2015), 125–134.
  • Kazan, A. and Karada¼g, H.B., Magnetic pseudo null and magnetic null curves in Minkowski space, International Mathematical Forum, 12(3), (2017), 119–132.
  • Munteanu M.I., Magnetic Curves in a Euclidean Space: One Example, Several Applications, Publications de L’Institut Mathematique, 9(108), (2013), 141-150.
  • Munteanu, M.I. and Nistor, A.I., The classi…cation of Killing magnetic curves in S2 R, Journal of Geometry and Physics, 62, (2012), 170–182.
  • Özdemir, M. and Ergin, A.A., Parallel Frames of Non-Lightlike Curves, Missouri J. Math. Sci. 20, (2008), 127–137.
  • Özdemir, Z., Gök, ·I., Yaylı Y. and Ekmekci, F.N., Notes on Magnetic Curves in 3D semi- Riemannian Manifolds, Turk J Math., 39, (2015), 412-426.
  • Wo, M.S., Gobithaasan, R.U. and Miura, K.T., Log-Aesthetic Magnetic Curves and Their Applicationfor CAD Systems, Mathematical Problems in Engineering , Article ID 504610, 16 pages, http://dx.doi.org/10.1155/2014/504610, (2014).
  • Current address : Ahmet Kazan: Department of Computer Technologies, Sürgü Vocational School of Higher Education, ·Inönü University, Malatya, Turkey. E-mail address : ahmet.kazan@inonu.edu.tr Current address : H.Bayram Karada¼g: Department of Mathematics, Faculty of Arts and Sci- ences, ·Inönü University, Malatya, Turkey. E-mail address : bayram.karadag@inonu.edu.tr
Year 2018, Volume: 67 Issue: 1, 147 - 160, 01.02.2018
https://doi.org/10.1501/Commua1_0000000838

References

  • Barros, M., Cabrerizo, J.L., Fernandez, M. and Romero A., Magnetic vortex …lament *ows, J Math Phys, 48, (2007), 1-27.
  • Bishop, R.L., There is more than one way to frame a curve, Amer. Math. Monthly, 82(3), (1975), 246–251.
  • Büyükkütük, S. and Öztürk, G., Constant Ratio Curves According to Bishop Frame in Euclid- ean 3-Space E3, Gen. Math. Notes, 28(1), (2015), 81-91.
  • Calin, C. and Crasmareanu, M., Magnetic Curves in Three-Dimensional Quasi-Para-Sasakian Geometry, Mediterr. J. Math., DOI 10.1007/s00009-015-0570-y, (2015).
  • Druta-Romaniuc, S.L., Inoguchi, J-I., Munteanu, M.I. and Nistor, A.I., Magnetic Curves in Sasakian Manifolds, Journal of Nonlinear Mathematical Physics, 22(3), (2015), 428-447.
  • Druta-Romaniuc, S.L. and Munteanu, M.I., Killing magnetic curves in a Minkowski 3-space, Nonlinear Analysis: Real World Applications, 14, (2013), 383-396.
  • Duggal, K. L. and Jin, D.H., Null Curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scienti…c Publishing, 2007.
  • Inoguchi, J-I. and Munteanu, M.I., Periodic Magnetic Curves in Elliptic Sasakian Space Forms, arXiv:1310.2899v1 [math.DG], (2013).
  • Jleli, M., Munteanu, M.I. and Nistor, A.I., Magnetic Trajectories in an Almost Contact Metric Manifold R2N +1, Results. Math., 67, (2015), 125–134.
  • Kazan, A. and Karada¼g, H.B., Magnetic pseudo null and magnetic null curves in Minkowski space, International Mathematical Forum, 12(3), (2017), 119–132.
  • Munteanu M.I., Magnetic Curves in a Euclidean Space: One Example, Several Applications, Publications de L’Institut Mathematique, 9(108), (2013), 141-150.
  • Munteanu, M.I. and Nistor, A.I., The classi…cation of Killing magnetic curves in S2 R, Journal of Geometry and Physics, 62, (2012), 170–182.
  • Özdemir, M. and Ergin, A.A., Parallel Frames of Non-Lightlike Curves, Missouri J. Math. Sci. 20, (2008), 127–137.
  • Özdemir, Z., Gök, ·I., Yaylı Y. and Ekmekci, F.N., Notes on Magnetic Curves in 3D semi- Riemannian Manifolds, Turk J Math., 39, (2015), 412-426.
  • Wo, M.S., Gobithaasan, R.U. and Miura, K.T., Log-Aesthetic Magnetic Curves and Their Applicationfor CAD Systems, Mathematical Problems in Engineering , Article ID 504610, 16 pages, http://dx.doi.org/10.1155/2014/504610, (2014).
  • Current address : Ahmet Kazan: Department of Computer Technologies, Sürgü Vocational School of Higher Education, ·Inönü University, Malatya, Turkey. E-mail address : ahmet.kazan@inonu.edu.tr Current address : H.Bayram Karada¼g: Department of Mathematics, Faculty of Arts and Sci- ences, ·Inönü University, Malatya, Turkey. E-mail address : bayram.karadag@inonu.edu.tr
There are 16 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Ahmet Kazan This is me

H.bayram Karadağ This is me

Publication Date February 1, 2018
Published in Issue Year 2018 Volume: 67 Issue: 1

Cite

APA Kazan, A., & Karadağ, H. (2018). MAGNETIC NON-NULL CURVES ACCORDING TO PARALLEL TRANSPORT FRAME IN MINKOWSKI 3-SPACE. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 67(1), 147-160. https://doi.org/10.1501/Commua1_0000000838
AMA Kazan A, Karadağ H. MAGNETIC NON-NULL CURVES ACCORDING TO PARALLEL TRANSPORT FRAME IN MINKOWSKI 3-SPACE. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2018;67(1):147-160. doi:10.1501/Commua1_0000000838
Chicago Kazan, Ahmet, and H.bayram Karadağ. “MAGNETIC NON-NULL CURVES ACCORDING TO PARALLEL TRANSPORT FRAME IN MINKOWSKI 3-SPACE”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67, no. 1 (February 2018): 147-60. https://doi.org/10.1501/Commua1_0000000838.
EndNote Kazan A, Karadağ H (February 1, 2018) MAGNETIC NON-NULL CURVES ACCORDING TO PARALLEL TRANSPORT FRAME IN MINKOWSKI 3-SPACE. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67 1 147–160.
IEEE A. Kazan and H. Karadağ, “MAGNETIC NON-NULL CURVES ACCORDING TO PARALLEL TRANSPORT FRAME IN MINKOWSKI 3-SPACE”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 67, no. 1, pp. 147–160, 2018, doi: 10.1501/Commua1_0000000838.
ISNAD Kazan, Ahmet - Karadağ, H.bayram. “MAGNETIC NON-NULL CURVES ACCORDING TO PARALLEL TRANSPORT FRAME IN MINKOWSKI 3-SPACE”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67/1 (February 2018), 147-160. https://doi.org/10.1501/Commua1_0000000838.
JAMA Kazan A, Karadağ H. MAGNETIC NON-NULL CURVES ACCORDING TO PARALLEL TRANSPORT FRAME IN MINKOWSKI 3-SPACE. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67:147–160.
MLA Kazan, Ahmet and H.bayram Karadağ. “MAGNETIC NON-NULL CURVES ACCORDING TO PARALLEL TRANSPORT FRAME IN MINKOWSKI 3-SPACE”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 67, no. 1, 2018, pp. 147-60, doi:10.1501/Commua1_0000000838.
Vancouver Kazan A, Karadağ H. MAGNETIC NON-NULL CURVES ACCORDING TO PARALLEL TRANSPORT FRAME IN MINKOWSKI 3-SPACE. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67(1):147-60.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.