Choudhary, B., Nanda, S., Functional Analysis with Applications, John Wiley & sons Inc.,New Delhi, 1989.
Maddox, I. J., Elements of Functional Analysis, Cambridge University Press (2nd edition), , Wilansky, A., Summability Through Functional Analysis, in: North-Holland Mathematics Studies,vol.85,Elsevier Science Publishers, Amsterdam, Newyork,Oxford,1984.
Lorentz, G.G., A contribution to the theory of divergent sequences, Acta Math. 80(1948), –190.
Wang, C. -S., On Nörlund sequence spaces, Tamkang J. Math. 9(1978), 269–274.
Ng, P. -N., Lee, P. -Y., Cesàro sequence spaces of non–absolute type, Comment. Math. (Prace Mat.) 20(2)(1978), 429–433.
Altay, B., Ba¸sar, F., Some Euler sequence spaces of non-absolute type, Ukrainian Math. J. (1)(2005), 1-17.
Altay, B., Ba¸sar, F., Mursaleen, M., On the Euler sequence spaces which include the spaces `pand `1I, Inform. Sci. 176(10)(2006), 1450-1462.
Mursaleen, M., Ba¸sar, F., Altay, B., On the Euler sequence spaces which include the spaces `pand `1II, Nonlinear Anal. 65(3)(2006),707-717.
Altay, B., Polat, H., On some new Euler diğerence sequence spaces, Southeast Asian Bull. Math. 30(2)(2006), 209-220.
Polat, H., Ba¸sar, F., Some Euler spaces of diğerence sequences of order m, Acta Math. Sci. Ser. B, Engl. Ed. 27B(2)(2007), 254-266.
Kara, E., E., Ba¸sarir, M., On compact operators and some Euler B(m)-diğerence sequence spaces J. Math. Anal. Appl. 379(2)(2011), 499-511.
Karakaya, V., Polat, H., Some new paranormed sequence spaces de…ned by Euler diğerence operators, Acta Sci. Math. (Szeged), 76(2010), 87-100.
Ba¸sar, F., Kiri¸sçi, M., Almost convergence and generalized diğerence matrix, Comput. Math. Appl. 61(3)(2011), 602–611.
Sönmez, A., Almost convergence and triple band matrix, Math. Comput. Model. , vol. 57, no. 9-10, pp. 2393-2402, 2013.
Kiri¸sçi, M., On the spaces of Euler almost null and Euler almost convergent sequences, Commun. Fac. Sci. Univ. Ank. Ser. A1, Volume 62, Number 2, 85-100(2013)
Boos, J., Classical and Modern Methods in Summability, Oxford University Press Inc., New York, 2000.
Bi¸sgin, M., C., The Binomial sequence spaces of nonabsolute type, J. Inequal. Appl., 2016:309, (2016).
Bi¸sgin, M., C., The Binomial sequence spaces which include the spaces `pand `1and geo- metric properties, J. Inequal. Appl., 2016:304, (2016).
Jarrah, A.M., Malkowsky, E., BK spaces, bases and linear operators, Rendiconti Circ. Mat. Palermo II 52(1990), 177–191.
Sıddıqi, J.A., In…nite matrices summing every almost periodic sequences, Pac. J. Math. (1)(1971), 235–251.
Öztürk, E., On strongly regular dual summability methods, Commun. Fac. Sci. Univ. Ank. Ser. A1,. 32(1983), 1–5.
King, J.P., Almost summable sequences, Proc. Amer. Math. Soc. 17(1966), 1219–1225
Duran, J.P., In…nite matrices and almost convergence, Math. Z. 128(1972), 75–83. Ba¸sar, F.,Çolak, R.
Almost-conservative matrix transformations,Turk. J. Math. (3)(1989), 91–100.
Current address : Mustafa CEM ·IL B·I¸SG·IN: Recep Tayyip Erdo¼gan University, Faculty Of Arts And Sciences, Department of Mathematics, Zihni Derin Campus, 53100 R·IZE/TURKEY.
Year 2018,
Volume: 67 Issue: 1, 211 - 224, 01.02.2018
Choudhary, B., Nanda, S., Functional Analysis with Applications, John Wiley & sons Inc.,New Delhi, 1989.
Maddox, I. J., Elements of Functional Analysis, Cambridge University Press (2nd edition), , Wilansky, A., Summability Through Functional Analysis, in: North-Holland Mathematics Studies,vol.85,Elsevier Science Publishers, Amsterdam, Newyork,Oxford,1984.
Lorentz, G.G., A contribution to the theory of divergent sequences, Acta Math. 80(1948), –190.
Wang, C. -S., On Nörlund sequence spaces, Tamkang J. Math. 9(1978), 269–274.
Ng, P. -N., Lee, P. -Y., Cesàro sequence spaces of non–absolute type, Comment. Math. (Prace Mat.) 20(2)(1978), 429–433.
Altay, B., Ba¸sar, F., Some Euler sequence spaces of non-absolute type, Ukrainian Math. J. (1)(2005), 1-17.
Altay, B., Ba¸sar, F., Mursaleen, M., On the Euler sequence spaces which include the spaces `pand `1I, Inform. Sci. 176(10)(2006), 1450-1462.
Mursaleen, M., Ba¸sar, F., Altay, B., On the Euler sequence spaces which include the spaces `pand `1II, Nonlinear Anal. 65(3)(2006),707-717.
Altay, B., Polat, H., On some new Euler diğerence sequence spaces, Southeast Asian Bull. Math. 30(2)(2006), 209-220.
Polat, H., Ba¸sar, F., Some Euler spaces of diğerence sequences of order m, Acta Math. Sci. Ser. B, Engl. Ed. 27B(2)(2007), 254-266.
Kara, E., E., Ba¸sarir, M., On compact operators and some Euler B(m)-diğerence sequence spaces J. Math. Anal. Appl. 379(2)(2011), 499-511.
Karakaya, V., Polat, H., Some new paranormed sequence spaces de…ned by Euler diğerence operators, Acta Sci. Math. (Szeged), 76(2010), 87-100.
Ba¸sar, F., Kiri¸sçi, M., Almost convergence and generalized diğerence matrix, Comput. Math. Appl. 61(3)(2011), 602–611.
Sönmez, A., Almost convergence and triple band matrix, Math. Comput. Model. , vol. 57, no. 9-10, pp. 2393-2402, 2013.
Kiri¸sçi, M., On the spaces of Euler almost null and Euler almost convergent sequences, Commun. Fac. Sci. Univ. Ank. Ser. A1, Volume 62, Number 2, 85-100(2013)
Boos, J., Classical and Modern Methods in Summability, Oxford University Press Inc., New York, 2000.
Bi¸sgin, M., C., The Binomial sequence spaces of nonabsolute type, J. Inequal. Appl., 2016:309, (2016).
Bi¸sgin, M., C., The Binomial sequence spaces which include the spaces `pand `1and geo- metric properties, J. Inequal. Appl., 2016:304, (2016).
Jarrah, A.M., Malkowsky, E., BK spaces, bases and linear operators, Rendiconti Circ. Mat. Palermo II 52(1990), 177–191.
Sıddıqi, J.A., In…nite matrices summing every almost periodic sequences, Pac. J. Math. (1)(1971), 235–251.
Öztürk, E., On strongly regular dual summability methods, Commun. Fac. Sci. Univ. Ank. Ser. A1,. 32(1983), 1–5.
King, J.P., Almost summable sequences, Proc. Amer. Math. Soc. 17(1966), 1219–1225
Duran, J.P., In…nite matrices and almost convergence, Math. Z. 128(1972), 75–83. Ba¸sar, F.,Çolak, R.
Almost-conservative matrix transformations,Turk. J. Math. (3)(1989), 91–100.
Current address : Mustafa CEM ·IL B·I¸SG·IN: Recep Tayyip Erdo¼gan University, Faculty Of Arts And Sciences, Department of Mathematics, Zihni Derin Campus, 53100 R·IZE/TURKEY.
Bişgin, M. C. (2018). The binomial almost convergent and null sequence spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 67(1), 211-224. https://doi.org/10.1501/Commua1_0000000843
AMA
Bişgin MC. The binomial almost convergent and null sequence spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2018;67(1):211-224. doi:10.1501/Commua1_0000000843
Chicago
Bişgin, Mustafa Cemil. “The Binomial Almost Convergent and Null Sequence Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67, no. 1 (February 2018): 211-24. https://doi.org/10.1501/Commua1_0000000843.
EndNote
Bişgin MC (February 1, 2018) The binomial almost convergent and null sequence spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67 1 211–224.
IEEE
M. C. Bişgin, “The binomial almost convergent and null sequence spaces”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 67, no. 1, pp. 211–224, 2018, doi: 10.1501/Commua1_0000000843.
ISNAD
Bişgin, Mustafa Cemil. “The Binomial Almost Convergent and Null Sequence Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67/1 (February 2018), 211-224. https://doi.org/10.1501/Commua1_0000000843.
JAMA
Bişgin MC. The binomial almost convergent and null sequence spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67:211–224.
MLA
Bişgin, Mustafa Cemil. “The Binomial Almost Convergent and Null Sequence Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 67, no. 1, 2018, pp. 211-24, doi:10.1501/Commua1_0000000843.
Vancouver
Bişgin MC. The binomial almost convergent and null sequence spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67(1):211-24.