In this paper, we will introduce the concept of classical (resp. strongly classical) 2-absorbing second submodules of modules over a commutative ring as a generalization of 2-absorbing (resp. strongly 2-absorbing) second submodules and investigate some basic properties of these classes of modules.
Ansari-Toroghy, H. and Farshadifar, F., The dual notion of some generalizations of prime submodules, Comm. Algebra, 39 (2011), 2396-2416.
Ansari-Toroghy, H. and Farshadifar, F., The dual notion of multiplication modules, Taiwanese J. Math. 11 (4) (2007), 1189--1201.
Ansari-Toroghy, H. and Farshadifar, F., On the dual notion of prime submodules, Algebra Colloq. 19 (Spec 1)(2012), 1109-1116.
Ansari-Toroghy, H. and Farshadifar, F., On the dual notion of prime radicals of submodules, Asian Eur. J. Math. 6 (2) (2013), 1350024 (11 pages).
Ansari-Toroghy, H. and Farshadifar, F., Some generalizations of second submodules, Palestine Journal of Mathematics, 8(2) (2019), 1-10.
Ansari-Toroghy, H., Farshadifar, F., and Pourmortazavi, S. S., On the P-interiors of submodules of Artinian modules, Hacettepe Journal of Mathematics and Statistics, 45(3) (2016), 675-682.
Badawi, A., On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), 417-429.
Barnard, A., Multiplication modules, J. Algebra, 71 (1981), 174-178.
Ceken, S., Alkan, M. and Smith, P.F., The dual notion of the prime radical of a module, J. Algebra, 392 (2013), 265-275.
Darani, A. Y. and Soheilnia, F., 2-absorbing and weakly 2-absorbing submoduels, Thai J. Math. 9(3) (2011), 577-584.
Dauns, J ., Prime submodules, J. Reine Angew. Math., 298 (1978), 156--181.
Fuchs, L., Heinzer, W. and Olberding, B., Commutative ideal theory without finiteness conditions: Irreducibility in the quotient filed, in : Abelian Groups, Rings, Modules, and Homological Algebra, Lect. Notes in Pure Appl. Math. 249 (2006), 121--145.
Kaplansky, I., Commutative rings, University of Chicago Press, 1978.
Mostafanasab, H., Tekir, U. and Oral, K.H., Classical 2-absorbing submodules of modules over commutative rings, European Journal of Pure and Applied Mathematics, 8(3) (2015), 417-430.
Payrovi, Sh. and Babaei, S., On 2-absorbing submodules, Algebra Collq. 19 (2012), 913-920.
Quartararo, P. and Butts, H. S., Finite unions of ideals and modules, Proc. Amer. Math. Soc. 52 (1975), 91-96.
Sharpe, D.W. and Vamos, P., Injective modules, Cambridge University Press, 1972.
Yassemi, S., The dual notion of prime submodules, Arch. Math. (Brno) 37 (2001), 273--278.
Yassemi, S., The dual notion of the cyclic modules, Kobe. J. Math. 15 (1998), 41--46.
Year 2020,
Volume: 69 Issue: 1, 123 - 136, 30.06.2020
Ansari-Toroghy, H. and Farshadifar, F., The dual notion of some generalizations of prime submodules, Comm. Algebra, 39 (2011), 2396-2416.
Ansari-Toroghy, H. and Farshadifar, F., The dual notion of multiplication modules, Taiwanese J. Math. 11 (4) (2007), 1189--1201.
Ansari-Toroghy, H. and Farshadifar, F., On the dual notion of prime submodules, Algebra Colloq. 19 (Spec 1)(2012), 1109-1116.
Ansari-Toroghy, H. and Farshadifar, F., On the dual notion of prime radicals of submodules, Asian Eur. J. Math. 6 (2) (2013), 1350024 (11 pages).
Ansari-Toroghy, H. and Farshadifar, F., Some generalizations of second submodules, Palestine Journal of Mathematics, 8(2) (2019), 1-10.
Ansari-Toroghy, H., Farshadifar, F., and Pourmortazavi, S. S., On the P-interiors of submodules of Artinian modules, Hacettepe Journal of Mathematics and Statistics, 45(3) (2016), 675-682.
Badawi, A., On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), 417-429.
Barnard, A., Multiplication modules, J. Algebra, 71 (1981), 174-178.
Ceken, S., Alkan, M. and Smith, P.F., The dual notion of the prime radical of a module, J. Algebra, 392 (2013), 265-275.
Darani, A. Y. and Soheilnia, F., 2-absorbing and weakly 2-absorbing submoduels, Thai J. Math. 9(3) (2011), 577-584.
Dauns, J ., Prime submodules, J. Reine Angew. Math., 298 (1978), 156--181.
Fuchs, L., Heinzer, W. and Olberding, B., Commutative ideal theory without finiteness conditions: Irreducibility in the quotient filed, in : Abelian Groups, Rings, Modules, and Homological Algebra, Lect. Notes in Pure Appl. Math. 249 (2006), 121--145.
Kaplansky, I., Commutative rings, University of Chicago Press, 1978.
Mostafanasab, H., Tekir, U. and Oral, K.H., Classical 2-absorbing submodules of modules over commutative rings, European Journal of Pure and Applied Mathematics, 8(3) (2015), 417-430.
Payrovi, Sh. and Babaei, S., On 2-absorbing submodules, Algebra Collq. 19 (2012), 913-920.
Quartararo, P. and Butts, H. S., Finite unions of ideals and modules, Proc. Amer. Math. Soc. 52 (1975), 91-96.
Sharpe, D.W. and Vamos, P., Injective modules, Cambridge University Press, 1972.
Yassemi, S., The dual notion of prime submodules, Arch. Math. (Brno) 37 (2001), 273--278.
Yassemi, S., The dual notion of the cyclic modules, Kobe. J. Math. 15 (1998), 41--46.
Farshadifar, F., & Ansari-toroghy, H. (2020). Classical and strongly classical 2-absorbing second submodules. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1), 123-136. https://doi.org/10.31801/cfsuasmas.550201
AMA
Farshadifar F, Ansari-toroghy H. Classical and strongly classical 2-absorbing second submodules. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2020;69(1):123-136. doi:10.31801/cfsuasmas.550201
Chicago
Farshadifar, Faranak, and Habibollah Ansari-toroghy. “Classical and Strongly Classical 2-Absorbing Second Submodules”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 1 (June 2020): 123-36. https://doi.org/10.31801/cfsuasmas.550201.
EndNote
Farshadifar F, Ansari-toroghy H (June 1, 2020) Classical and strongly classical 2-absorbing second submodules. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 1 123–136.
IEEE
F. Farshadifar and H. Ansari-toroghy, “Classical and strongly classical 2-absorbing second submodules”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 1, pp. 123–136, 2020, doi: 10.31801/cfsuasmas.550201.
ISNAD
Farshadifar, Faranak - Ansari-toroghy, Habibollah. “Classical and Strongly Classical 2-Absorbing Second Submodules”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/1 (June 2020), 123-136. https://doi.org/10.31801/cfsuasmas.550201.
JAMA
Farshadifar F, Ansari-toroghy H. Classical and strongly classical 2-absorbing second submodules. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:123–136.
MLA
Farshadifar, Faranak and Habibollah Ansari-toroghy. “Classical and Strongly Classical 2-Absorbing Second Submodules”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 1, 2020, pp. 123-36, doi:10.31801/cfsuasmas.550201.
Vancouver
Farshadifar F, Ansari-toroghy H. Classical and strongly classical 2-absorbing second submodules. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(1):123-36.