Research Article
BibTex RIS Cite
Year 2020, Volume: 69 Issue: 1, 891 - 899, 30.06.2020
https://doi.org/10.31801/cfsuasmas.567753

Abstract

References

  • Akça, Z., Bayar, A., Ekmekçi, S. and Van Maldeghem, H., Fuzzy projective spreads of fuzzy projective spaces, Fuzzy Sets and Systems, 157 (2006) 3237-3247.
  • Akça, Z., Bayar, A. and Ekmekçi, S., On the classification of Fuzzy projective lines of Fuzzy 3-dimensional projective spaces, Communications Mathematics and Statistics, Vol. 55(2) (2007) 17-23.
  • Akpınar, A., Çelik, B. and Çiftci, S., Cross-Ratios and 6-Figures in some Moufang-Klingenberg Planes, The Bulletin of the Belgian Mathematical Society-Simon Stevin 15(1) (2008) 49-64.
  • Atanassov, K. T., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986) 87-96.
  • Bayar, A., Akça, Z. and Ekmekçi, S., A Note on Fibered Projective Plane Geometry, Information Science, 178 (2008) 1257-1262.
  • Bayar, A. and Ekmekçi, S., On the Menelaus and Ceva 6-figures in the fibered projective planes, Absract and Applied Analysis, (2014) 1-5.
  • Bayar, A. and Ekmekçi, S., On some classical theorems in intuitionistic fuzzy projective plane, KJM,Volume 3 No. 1 (2015) 12-15.
  • Ekmekçi, S., Bayar, A. and Akça, Z., On the classification of Fuzzy projective planes of Fuzzy 3-dimensional projective spaces, Chaos, Solitons and Fractals, 40 (2009) 2146-2151.
  • Funk, B. K., Ceva and Menelaus in projective geometry, University of Louisuille, (2008) 42 p.
  • Ghassan, E. A., Intuitionistic fuzzy projective geometry, J. of Al-Ambar University for Pure Science, 3 (2009) 1-5.
  • Kaya, R. and Çiftci, S., On Menelaus and Ceva 6-figures in Moufang projective plane, Geometriae Dedicata 19 (1985) 295-296.
  • Klamkin, M. and Liu, A., Simultaneous generalizations of the theorems of Ceva and Menelaus, Mathematics Magazine, 65, (1992) 48-52.
  • Kuijken, L. and Van Maldeghem, H., Fibered Geometries, Discrete Mathematics, 255 (2002) 259-274.
  • Kuijken, L., Van Maldeghem, H. and Kerre, E., Fuzzy projective geometries from fuzzy vector spaces, in: A. Billot et al. (Eds.), Information Processing and Management of Uncertainty in Knowledge-based Systems, Editions Medicales et Scientifiques, Paris, La Sorbonne, (1998) 1331-1338.
  • Zadeh, L., Fuzzy sets, Information control, 8 (1965) 338-353.

On the intuitionistic fuzzy projective Menelaus and Ceva's conditions

Year 2020, Volume: 69 Issue: 1, 891 - 899, 30.06.2020
https://doi.org/10.31801/cfsuasmas.567753

Abstract

In this work, the intuitionistic fuzzy versions of Menelaus and Ceva's theorems in intuitionistic fuzzy projective plane are defined and the conditions to the intuitionistic fuzzy versions of Menelaus and Ceva 6-figures are determined.

References

  • Akça, Z., Bayar, A., Ekmekçi, S. and Van Maldeghem, H., Fuzzy projective spreads of fuzzy projective spaces, Fuzzy Sets and Systems, 157 (2006) 3237-3247.
  • Akça, Z., Bayar, A. and Ekmekçi, S., On the classification of Fuzzy projective lines of Fuzzy 3-dimensional projective spaces, Communications Mathematics and Statistics, Vol. 55(2) (2007) 17-23.
  • Akpınar, A., Çelik, B. and Çiftci, S., Cross-Ratios and 6-Figures in some Moufang-Klingenberg Planes, The Bulletin of the Belgian Mathematical Society-Simon Stevin 15(1) (2008) 49-64.
  • Atanassov, K. T., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986) 87-96.
  • Bayar, A., Akça, Z. and Ekmekçi, S., A Note on Fibered Projective Plane Geometry, Information Science, 178 (2008) 1257-1262.
  • Bayar, A. and Ekmekçi, S., On the Menelaus and Ceva 6-figures in the fibered projective planes, Absract and Applied Analysis, (2014) 1-5.
  • Bayar, A. and Ekmekçi, S., On some classical theorems in intuitionistic fuzzy projective plane, KJM,Volume 3 No. 1 (2015) 12-15.
  • Ekmekçi, S., Bayar, A. and Akça, Z., On the classification of Fuzzy projective planes of Fuzzy 3-dimensional projective spaces, Chaos, Solitons and Fractals, 40 (2009) 2146-2151.
  • Funk, B. K., Ceva and Menelaus in projective geometry, University of Louisuille, (2008) 42 p.
  • Ghassan, E. A., Intuitionistic fuzzy projective geometry, J. of Al-Ambar University for Pure Science, 3 (2009) 1-5.
  • Kaya, R. and Çiftci, S., On Menelaus and Ceva 6-figures in Moufang projective plane, Geometriae Dedicata 19 (1985) 295-296.
  • Klamkin, M. and Liu, A., Simultaneous generalizations of the theorems of Ceva and Menelaus, Mathematics Magazine, 65, (1992) 48-52.
  • Kuijken, L. and Van Maldeghem, H., Fibered Geometries, Discrete Mathematics, 255 (2002) 259-274.
  • Kuijken, L., Van Maldeghem, H. and Kerre, E., Fuzzy projective geometries from fuzzy vector spaces, in: A. Billot et al. (Eds.), Information Processing and Management of Uncertainty in Knowledge-based Systems, Editions Medicales et Scientifiques, Paris, La Sorbonne, (1998) 1331-1338.
  • Zadeh, L., Fuzzy sets, Information control, 8 (1965) 338-353.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Ziya Akça 0000-0001-6379-0546

Ayşe Bayar 0000-0002-2210-5423

Süheyla Ekmekçi

Publication Date June 30, 2020
Submission Date May 20, 2019
Acceptance Date February 25, 2020
Published in Issue Year 2020 Volume: 69 Issue: 1

Cite

APA Akça, Z., Bayar, A., & Ekmekçi, S. (2020). On the intuitionistic fuzzy projective Menelaus and Ceva’s conditions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1), 891-899. https://doi.org/10.31801/cfsuasmas.567753
AMA Akça Z, Bayar A, Ekmekçi S. On the intuitionistic fuzzy projective Menelaus and Ceva’s conditions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2020;69(1):891-899. doi:10.31801/cfsuasmas.567753
Chicago Akça, Ziya, Ayşe Bayar, and Süheyla Ekmekçi. “On the Intuitionistic Fuzzy Projective Menelaus and Ceva’s Conditions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 1 (June 2020): 891-99. https://doi.org/10.31801/cfsuasmas.567753.
EndNote Akça Z, Bayar A, Ekmekçi S (June 1, 2020) On the intuitionistic fuzzy projective Menelaus and Ceva’s conditions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 1 891–899.
IEEE Z. Akça, A. Bayar, and S. Ekmekçi, “On the intuitionistic fuzzy projective Menelaus and Ceva’s conditions”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 1, pp. 891–899, 2020, doi: 10.31801/cfsuasmas.567753.
ISNAD Akça, Ziya et al. “On the Intuitionistic Fuzzy Projective Menelaus and Ceva’s Conditions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/1 (June 2020), 891-899. https://doi.org/10.31801/cfsuasmas.567753.
JAMA Akça Z, Bayar A, Ekmekçi S. On the intuitionistic fuzzy projective Menelaus and Ceva’s conditions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:891–899.
MLA Akça, Ziya et al. “On the Intuitionistic Fuzzy Projective Menelaus and Ceva’s Conditions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 1, 2020, pp. 891-9, doi:10.31801/cfsuasmas.567753.
Vancouver Akça Z, Bayar A, Ekmekçi S. On the intuitionistic fuzzy projective Menelaus and Ceva’s conditions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(1):891-9.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.