Research Article
BibTex RIS Cite
Year 2021, Volume: 70 Issue: 1, 156 - 179, 30.06.2021
https://doi.org/10.31801/cfsuasmas.534711

Abstract

References

  • Arroyo, J., Gonzalez-Rivera, G. and Mate, C., Forecasting with Interval and Histogram Data: Some Financial Applications: In \Handbook of Empirical Economics and Finance" (A. Ullah, D. Giles, N. Balakrishnan, W. Schucany and E. R. Schilling, Eds.), Chapman and Hall, 2010.
  • Arroyo, J., Espinola, R. and Mate, C., Different approaches to forecast interval time series: A comparison in finance, Computational Economics 37, (2011), 169-191.
  • Bache, I. W., Jore, A. S., Mitchell, J. and Vahey, S. P., Combining Var and Dsge forecast densities, Journal of Economic Dynamics and Control 35(10), (2011), 1659-1670.
  • Batchelor, R., Alizadeh, A. and Visvikis, I., Forecasting spot and forward prices in the international freight market, International Journal of Forecasting 23(1), (2007), 101-114.
  • Baumeister, C. and Kilian, L., Real-time forecasts of the real price of oil, Journal of Business & Economic Statistics 30(2), (2012), 326-336.
  • Berg, T. O. and Henzel, S. R., Point and density forecasts for the Euro area using Bayesian Vars, International Journal of Forecasting 31(4), (2015), 1067-1095.
  • Bertrand, P. and Goupil, F., Descriptive Statistic for Symbolic Data: In "Analysis of Symbolic Data - Studies in Classification, Data Analysis, and Knowledge Organization" ( H. H. Bock and E. Diday, Eds. ), Springer, 2000.
  • Beyaztas, B. H., Firuzan, E. and Beyaztas, U., New block bootstrap methods: suficient and/or ordered, Communications in Statistics - Simulation and Computation 46(5), (2017), 3942-3951.
  • Beyaztas, B.H., Beyaztas, U, Bandyopadhyay, S.and Huang, W.M., New and fast block bootstrap-based prediction intervals for GARCH(1,1) process with application to exchange rates, Sankhya Series A 80(1), (2018), 168-194.
  • Billard, L. and Diday, E., Regression Analysis for Interval-Valued Data: In \Data analysis, Classification, and Related Methods - Studies in Classification, Data Analysis, and Knowledge Organization"( H. A. L. Kiers, J. P. Rassoon, P. J. F. Groenen and M. Schader, Eds. ), Springer, 2000.
  • Billard, L. and Diday, E., Symbolic regression analysis: In "Classification, Clustering, and Data Analysis - Studies in Classification, Data Analysis, and Knowledge Organization"(K. Jajuga, A. Sokolowski and H. H. Bock, Eds.), Springer, 2002.
  • Billard, L. and Diday, E., From the statistics of data to the statistics of knowledge: symbolic data analysis, Journal of the American Statistical Association 98, (2003), No. 462, 470-487.
  • Billard, L. and Diday E., Symbolic data analysis: Conceptual statistics and data mining, John Wiley & Sons, 2006.
  • Bock, H. H. and Diday, E., Analysis of Symbolic Data, Springer, 2000.
  • Brito, P., Modelling and Analysing Interval Data: In \Advances in Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization"( R. Decker and H. J. Lenz, Eds), Springer, 2007.
  • Chatfield, C., Calculating interval forecasts, Journal of Business & Economics Statistics 11, (1993), No. 2, 121-135.
  • Cheung, Y. W., An empirical model of daily highs and lows, International Journal of Finance & Economics 12(1), (2007), 1-20.
  • Clark, T. E., Real-time density forecasts from Bayesian Vector autoregressions with stochastic volatility, Journal of Business & Economic Statistics 29(3), (2011), 327-341.
  • D'Agostino, A., Gambetti, L. and Giannone, D., Macroeconomic forecasting and structural change, Journal of Applied Econometrics 28(1), (2013), 82-101.
  • Diday, E. and Noirhomme, M., Symbolic Data and the SODAS Software, John Wiley & Sons, 2008.
  • Dufour, J. M. and Jouini, T., Finite-sample simulation-based tests in VAR models with application to Granger causality testing, Journal of Econometrics 135(1-2), (2006), 229-254.
  • Edlund, P. O. and Karlsson, S., Forecasting the Swedish unemployment rate Var vs transfer function modelling, International Journal of Forecasting 9(1), (1993), 61-76.
  • Fresoli, D., Ruiz, E. and Pascual, L., Bootstrap multi-step forecasts of non-Gaussian Var models, International Journal of Forecasting 31(3), (2015), 834-848.
  • Garcia-Ascanio, C. and Mate, C., Electric power demand forecasting using interval time series: A comparison between VAR and iMLP, Energy Policy 38(2), (2010), 715-725.
  • Hall, P., Resampling a coverage pattern, Stochastic Processes and their Applications 20(2), (1985), 231-246.
  • Jarocinski, M., Conditional forecasts and uncertainty about forecast revisions in Vector autoregressions, Economic Letters 108(3), (2010), 257-259.
  • Jore, A. S., Mitchell, J. and Vahey, S. P., Combining forecast densities from Vars with uncertain instabilities, Journal of Applied Econometrics 25(4), (2010), 621-634.
  • Kapetanios, G., Labhard, V. and Price, S., Forecast combination and the Bank of England's suite of statistical forecasting models, Economic Modelling 25(4), (2008), 772-792.
  • Kilian, L., Accounting for lag order uncertainty in autoregressions: the endogenous lag order bootstrap algorithm, Journal of Time Series Analysis 19(5), (1998), 531-548.
  • Kilian, L. and Vigfusson, R. J., Do oil prices help forecast U.S. real gdp? the role of nonlinearities and asymmetries, Journal of Business & Economic Statistics 31(1), (2013), 78-93.
  • Kim, J. H., Asymptotic and bootstrap prediction regions for Vector autoregression, International Journal of Forecasting 15(4), (1999), 393-403.
  • Kim, J. H., Bias-corrected bootstrap prediction regions for Vector autoregression, Journal of Forecasting 23(2), (2004), 141-154.
  • Koop, G. M., Forecasting with medium and large Bayesian Vars, Journal of Applied Econometrics 28(2), (2013), 177-203.
  • Lima Neto, E. A. and De Carvalho, F. A. T., Centre and range method for fitting a linear regression model to symbolic interval data, Computational Statistics & Data Analysis 52(3), (2008), 1500-1515.
  • Lima Neto, E. A. and De Carvalho, F. A. T., Constrained linear regression models for symbolic interval-valued variables, Computational Statistics & Data Analysis 54(2), (2010), 333-347.
  • Litterman, R. B., Forecasting with Bayesian Vector autoregressions five years of experience, Journal of Business & Economic Statistics 4(1), (1986), 25-38.
  • Lutkepohl, H., Introduction to multiple time series analysis, Springer-Verlag Berlin Heidelberg, 1991.
  • Maia, A. L. S., De Carvalho, F. A. T. and Ludermir, T. B., Forecasting models for intervalvalued time series, Neurocomputing 71 (16-18), (2008), 3344-3352.
  • McNees, S. K., Forecasting accuracy of alternative techniques: A comparison of U.S. macroeconomic forecasts, Journal of Business & Economic Statistics 4(1), (1986), 5-15.
  • Nalban, V., Do Bayesian Vector autoregressive models improve density forecasting accuracy? The case of the Czech Republic and Romania, International Journal of Economic Sciences 4(1), (2015), 60-74.
  • Noirhomme-Fraiture, M. and Brito, P., Far beyond the classical data models: symbolic data analysis, Statistical Analysis and Data Mining 4(2), (2011), 157-170.
  • Polito, V. and Wickens, M., Optimal monetary policy using an unrestricted Var, Journal of Applied Econometrics 27(4), (2012), 525-553.
  • Silva, A. P. D. and Brito, P., Linear discriminant analysis for interval data, Computational Statistics 21(2), (2006), 289-308.
  • Stock, J. H. and Watson, M. W., Vector autoregressions, Journal of Economic Perspectives 15(4), (2001), 101-115.
  • Taiwo, A. I. and Olatayo, T. O., Measuring forecasting performance of Vector autoregressive and time series regression models, American Journal of Scientific and Industrial Research 4(1), (2013), 49-58.
  • Teles, P. and Brito, P., Modelling Interval Time Series Data, Proceedings of the 3rd IASC World Conference on Computational Statistics and Data Analysis. (2005).
  • Teles, P. and Brito, P., Modeling interval time series with space-time processes, Communications in Statistics - Theory and Methods 44(17), (2015), 3599-3627.
  • Beyaztas, B.H., Construction of multi-step forecast regions of VAR processes using ordered block bootstrap, Communications in Statistics - Simulation and Computation, DOI: 10.1080/03610918.2019.1596282.
  • Baltagi, B. H., Econometrics, Springer, 2008.
  • Brockwell, P. J., Davis, R. A., Time series: Theory and Methods, Springer-Verlag, 1991.
  • Davidson, R., MacKinnon, J. G., Bootstrap tests: how many bootstraps?, Econometric Reviews 19(1), (2000), 55-68.
  • Gonzalo, J., Lee, T., Pitfalls in testing for long run relationships, Journal of Econometrics 86(1), (1998), 129-159.
  • Hesterberg, T. C., What teachers should know about the bootstrap: resampling in the undergraduate statistics curriculum, The American Statistician 69(4), (2015), 371-386.
  • Lahiri, S. N., Resampling Methods for Dependent Data, New York: Springer, 2003.
  • Rochon, J., ARMA covariance structures with time heteroscedasticity for repeated measures experiments, Journal of the American Statistical Association 87(419), (1992), 777-784.
  • Triacca, U., A Pitfall in using the characterization of Granger non-causality in Vector autoregressive models, Econometrics 3(2), (2015), 233-239.

Bootstrap based multi-step ahead joint forecast densities for financial interval-valued time series

Year 2021, Volume: 70 Issue: 1, 156 - 179, 30.06.2021
https://doi.org/10.31801/cfsuasmas.534711

Abstract

This study presents two interval-valued time series approaches to construct multivariate multi-step ahead joint forecast regions based on two bootstrap algorithms. The first approach is based on fitting a dynamic bivariate system via a VAR process for minimum and maximum of the interval while the second approach applies for mid-points and half-ranges of interval-valued time series. As a novel perspective, we adopt two bootstrap techniques into the proposed interval-valued time series approaches to obtain joint forecast regions of the lower/upper bounds of the intervals. The forecasting performances of the proposed approaches are evaluated by extensive Monte Carlo simulations and two real-world examples: (i) monthly S&P 500 stock indices; (ii) monthly USD/SEK exchange rates. Our results demonstrate that the proposed approaches are capable of producing valid multivariate forecast regions for interval-valued time series.

References

  • Arroyo, J., Gonzalez-Rivera, G. and Mate, C., Forecasting with Interval and Histogram Data: Some Financial Applications: In \Handbook of Empirical Economics and Finance" (A. Ullah, D. Giles, N. Balakrishnan, W. Schucany and E. R. Schilling, Eds.), Chapman and Hall, 2010.
  • Arroyo, J., Espinola, R. and Mate, C., Different approaches to forecast interval time series: A comparison in finance, Computational Economics 37, (2011), 169-191.
  • Bache, I. W., Jore, A. S., Mitchell, J. and Vahey, S. P., Combining Var and Dsge forecast densities, Journal of Economic Dynamics and Control 35(10), (2011), 1659-1670.
  • Batchelor, R., Alizadeh, A. and Visvikis, I., Forecasting spot and forward prices in the international freight market, International Journal of Forecasting 23(1), (2007), 101-114.
  • Baumeister, C. and Kilian, L., Real-time forecasts of the real price of oil, Journal of Business & Economic Statistics 30(2), (2012), 326-336.
  • Berg, T. O. and Henzel, S. R., Point and density forecasts for the Euro area using Bayesian Vars, International Journal of Forecasting 31(4), (2015), 1067-1095.
  • Bertrand, P. and Goupil, F., Descriptive Statistic for Symbolic Data: In "Analysis of Symbolic Data - Studies in Classification, Data Analysis, and Knowledge Organization" ( H. H. Bock and E. Diday, Eds. ), Springer, 2000.
  • Beyaztas, B. H., Firuzan, E. and Beyaztas, U., New block bootstrap methods: suficient and/or ordered, Communications in Statistics - Simulation and Computation 46(5), (2017), 3942-3951.
  • Beyaztas, B.H., Beyaztas, U, Bandyopadhyay, S.and Huang, W.M., New and fast block bootstrap-based prediction intervals for GARCH(1,1) process with application to exchange rates, Sankhya Series A 80(1), (2018), 168-194.
  • Billard, L. and Diday, E., Regression Analysis for Interval-Valued Data: In \Data analysis, Classification, and Related Methods - Studies in Classification, Data Analysis, and Knowledge Organization"( H. A. L. Kiers, J. P. Rassoon, P. J. F. Groenen and M. Schader, Eds. ), Springer, 2000.
  • Billard, L. and Diday, E., Symbolic regression analysis: In "Classification, Clustering, and Data Analysis - Studies in Classification, Data Analysis, and Knowledge Organization"(K. Jajuga, A. Sokolowski and H. H. Bock, Eds.), Springer, 2002.
  • Billard, L. and Diday, E., From the statistics of data to the statistics of knowledge: symbolic data analysis, Journal of the American Statistical Association 98, (2003), No. 462, 470-487.
  • Billard, L. and Diday E., Symbolic data analysis: Conceptual statistics and data mining, John Wiley & Sons, 2006.
  • Bock, H. H. and Diday, E., Analysis of Symbolic Data, Springer, 2000.
  • Brito, P., Modelling and Analysing Interval Data: In \Advances in Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization"( R. Decker and H. J. Lenz, Eds), Springer, 2007.
  • Chatfield, C., Calculating interval forecasts, Journal of Business & Economics Statistics 11, (1993), No. 2, 121-135.
  • Cheung, Y. W., An empirical model of daily highs and lows, International Journal of Finance & Economics 12(1), (2007), 1-20.
  • Clark, T. E., Real-time density forecasts from Bayesian Vector autoregressions with stochastic volatility, Journal of Business & Economic Statistics 29(3), (2011), 327-341.
  • D'Agostino, A., Gambetti, L. and Giannone, D., Macroeconomic forecasting and structural change, Journal of Applied Econometrics 28(1), (2013), 82-101.
  • Diday, E. and Noirhomme, M., Symbolic Data and the SODAS Software, John Wiley & Sons, 2008.
  • Dufour, J. M. and Jouini, T., Finite-sample simulation-based tests in VAR models with application to Granger causality testing, Journal of Econometrics 135(1-2), (2006), 229-254.
  • Edlund, P. O. and Karlsson, S., Forecasting the Swedish unemployment rate Var vs transfer function modelling, International Journal of Forecasting 9(1), (1993), 61-76.
  • Fresoli, D., Ruiz, E. and Pascual, L., Bootstrap multi-step forecasts of non-Gaussian Var models, International Journal of Forecasting 31(3), (2015), 834-848.
  • Garcia-Ascanio, C. and Mate, C., Electric power demand forecasting using interval time series: A comparison between VAR and iMLP, Energy Policy 38(2), (2010), 715-725.
  • Hall, P., Resampling a coverage pattern, Stochastic Processes and their Applications 20(2), (1985), 231-246.
  • Jarocinski, M., Conditional forecasts and uncertainty about forecast revisions in Vector autoregressions, Economic Letters 108(3), (2010), 257-259.
  • Jore, A. S., Mitchell, J. and Vahey, S. P., Combining forecast densities from Vars with uncertain instabilities, Journal of Applied Econometrics 25(4), (2010), 621-634.
  • Kapetanios, G., Labhard, V. and Price, S., Forecast combination and the Bank of England's suite of statistical forecasting models, Economic Modelling 25(4), (2008), 772-792.
  • Kilian, L., Accounting for lag order uncertainty in autoregressions: the endogenous lag order bootstrap algorithm, Journal of Time Series Analysis 19(5), (1998), 531-548.
  • Kilian, L. and Vigfusson, R. J., Do oil prices help forecast U.S. real gdp? the role of nonlinearities and asymmetries, Journal of Business & Economic Statistics 31(1), (2013), 78-93.
  • Kim, J. H., Asymptotic and bootstrap prediction regions for Vector autoregression, International Journal of Forecasting 15(4), (1999), 393-403.
  • Kim, J. H., Bias-corrected bootstrap prediction regions for Vector autoregression, Journal of Forecasting 23(2), (2004), 141-154.
  • Koop, G. M., Forecasting with medium and large Bayesian Vars, Journal of Applied Econometrics 28(2), (2013), 177-203.
  • Lima Neto, E. A. and De Carvalho, F. A. T., Centre and range method for fitting a linear regression model to symbolic interval data, Computational Statistics & Data Analysis 52(3), (2008), 1500-1515.
  • Lima Neto, E. A. and De Carvalho, F. A. T., Constrained linear regression models for symbolic interval-valued variables, Computational Statistics & Data Analysis 54(2), (2010), 333-347.
  • Litterman, R. B., Forecasting with Bayesian Vector autoregressions five years of experience, Journal of Business & Economic Statistics 4(1), (1986), 25-38.
  • Lutkepohl, H., Introduction to multiple time series analysis, Springer-Verlag Berlin Heidelberg, 1991.
  • Maia, A. L. S., De Carvalho, F. A. T. and Ludermir, T. B., Forecasting models for intervalvalued time series, Neurocomputing 71 (16-18), (2008), 3344-3352.
  • McNees, S. K., Forecasting accuracy of alternative techniques: A comparison of U.S. macroeconomic forecasts, Journal of Business & Economic Statistics 4(1), (1986), 5-15.
  • Nalban, V., Do Bayesian Vector autoregressive models improve density forecasting accuracy? The case of the Czech Republic and Romania, International Journal of Economic Sciences 4(1), (2015), 60-74.
  • Noirhomme-Fraiture, M. and Brito, P., Far beyond the classical data models: symbolic data analysis, Statistical Analysis and Data Mining 4(2), (2011), 157-170.
  • Polito, V. and Wickens, M., Optimal monetary policy using an unrestricted Var, Journal of Applied Econometrics 27(4), (2012), 525-553.
  • Silva, A. P. D. and Brito, P., Linear discriminant analysis for interval data, Computational Statistics 21(2), (2006), 289-308.
  • Stock, J. H. and Watson, M. W., Vector autoregressions, Journal of Economic Perspectives 15(4), (2001), 101-115.
  • Taiwo, A. I. and Olatayo, T. O., Measuring forecasting performance of Vector autoregressive and time series regression models, American Journal of Scientific and Industrial Research 4(1), (2013), 49-58.
  • Teles, P. and Brito, P., Modelling Interval Time Series Data, Proceedings of the 3rd IASC World Conference on Computational Statistics and Data Analysis. (2005).
  • Teles, P. and Brito, P., Modeling interval time series with space-time processes, Communications in Statistics - Theory and Methods 44(17), (2015), 3599-3627.
  • Beyaztas, B.H., Construction of multi-step forecast regions of VAR processes using ordered block bootstrap, Communications in Statistics - Simulation and Computation, DOI: 10.1080/03610918.2019.1596282.
  • Baltagi, B. H., Econometrics, Springer, 2008.
  • Brockwell, P. J., Davis, R. A., Time series: Theory and Methods, Springer-Verlag, 1991.
  • Davidson, R., MacKinnon, J. G., Bootstrap tests: how many bootstraps?, Econometric Reviews 19(1), (2000), 55-68.
  • Gonzalo, J., Lee, T., Pitfalls in testing for long run relationships, Journal of Econometrics 86(1), (1998), 129-159.
  • Hesterberg, T. C., What teachers should know about the bootstrap: resampling in the undergraduate statistics curriculum, The American Statistician 69(4), (2015), 371-386.
  • Lahiri, S. N., Resampling Methods for Dependent Data, New York: Springer, 2003.
  • Rochon, J., ARMA covariance structures with time heteroscedasticity for repeated measures experiments, Journal of the American Statistical Association 87(419), (1992), 777-784.
  • Triacca, U., A Pitfall in using the characterization of Granger non-causality in Vector autoregressive models, Econometrics 3(2), (2015), 233-239.
There are 56 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Beste Hamiye Beyaztaş 0000-0002-6266-6487

Publication Date June 30, 2021
Submission Date March 2, 2019
Acceptance Date November 12, 2020
Published in Issue Year 2021 Volume: 70 Issue: 1

Cite

APA Beyaztaş, B. H. (2021). Bootstrap based multi-step ahead joint forecast densities for financial interval-valued time series. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(1), 156-179. https://doi.org/10.31801/cfsuasmas.534711
AMA Beyaztaş BH. Bootstrap based multi-step ahead joint forecast densities for financial interval-valued time series. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2021;70(1):156-179. doi:10.31801/cfsuasmas.534711
Chicago Beyaztaş, Beste Hamiye. “Bootstrap Based Multi-Step Ahead Joint Forecast Densities for Financial Interval-Valued Time Series”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 1 (June 2021): 156-79. https://doi.org/10.31801/cfsuasmas.534711.
EndNote Beyaztaş BH (June 1, 2021) Bootstrap based multi-step ahead joint forecast densities for financial interval-valued time series. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 1 156–179.
IEEE B. H. Beyaztaş, “Bootstrap based multi-step ahead joint forecast densities for financial interval-valued time series”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 1, pp. 156–179, 2021, doi: 10.31801/cfsuasmas.534711.
ISNAD Beyaztaş, Beste Hamiye. “Bootstrap Based Multi-Step Ahead Joint Forecast Densities for Financial Interval-Valued Time Series”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/1 (June 2021), 156-179. https://doi.org/10.31801/cfsuasmas.534711.
JAMA Beyaztaş BH. Bootstrap based multi-step ahead joint forecast densities for financial interval-valued time series. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:156–179.
MLA Beyaztaş, Beste Hamiye. “Bootstrap Based Multi-Step Ahead Joint Forecast Densities for Financial Interval-Valued Time Series”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 1, 2021, pp. 156-79, doi:10.31801/cfsuasmas.534711.
Vancouver Beyaztaş BH. Bootstrap based multi-step ahead joint forecast densities for financial interval-valued time series. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(1):156-79.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.