In this study, we introduce the natural mate and conjugate mate of a Frenet curve in a three dimensional Lie group $ \mathbb{G} $ with bi-invariant metric. Also, we give some relationships between a Frenet curve and its natural mate or its conjugate mate in $ \mathbb{G} $. Especially, we obtain some results for the natural mate and the conjugate mate of a Frenet curve in $ \mathbb{G} $ when the Frenet curve is a general helix, a slant helix, a spherical curve, a rectifying curve, a Salkowski (constant curvature and non-constant torsion), anti-Salkowski (non-constant curvature and constant torsion), Bertrand curve. Finally, we give nice graphics with numeric solution in Euclidean 3-space as a commutative Lie group.
Natural mate conjugate mate helix slant helix spherical curve rectifying curve Salkowski curve anti-Salkowski curve
--
---
---
---
Primary Language | English |
---|---|
Subjects | Mathematical Sciences |
Journal Section | Research Articles |
Authors | |
Project Number | --- |
Publication Date | June 30, 2021 |
Submission Date | August 25, 2020 |
Acceptance Date | February 1, 2021 |
Published in Issue | Year 2021 Volume: 70 Issue: 1 |
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.
This work is licensed under a Creative Commons Attribution 4.0 International License.