Research Article
BibTex RIS Cite
Year 2021, Volume: 70 Issue: 2, 773 - 784, 31.12.2021
https://doi.org/10.31801/cfsuasmas.768848

Abstract

References

  • Peetre, J., On the theory of $L^{p,\alpha}$ spaces, J. Funct. Anal., 4 (1964), 71-87. https://doi.org/10.1016/0022-1236(69)90022-6
  • Zorko, C. T., Morrey space, Proc. Of the Amer. Math. Society, 98 (4) (1986), 586-592. DOI: https://doi.org/10.1090/S0002-9939-1986-0861756-X
  • Ky, N. X., On approximation by trigonometric polynomials in $L^{p}_{u}$-spaces, Studia Sci. Math. Hungar, 28 (1993), 183-188. DOI:10.1515/gmj-2012-0043
  • Samko, N., Weighted hardy and singular operators in Morrey spaces, Journal of Math. Anal. and Appl., 350(1), (2009), 56-72. DOI:10.1016/j.jmaa.2008.09.021
  • Israfilov, D. M., Tozman, N. P., Approximation in Morrey-Smirnov classes, Azerb. J. of Math., 1(1), (2011), 99-113. DOI:10.3336/gm.40.1.09
  • Bilalov, B. T., Guliyeva, A. A., On basicity of exponential systems in Morrey-type spaces, Inter. J. of Math., 25(6) (2014), 10 pages. DOI:10.1142/S0129167X14500542
  • Bilalov, B. T., The basis property of a perturbed system of exponentials in Morrey-type spaces, Siberian Math. J., 60(2) (2019), 249-271. DOI:https://doi.org/10.33048/smzh.2019.60.206
  • Bilalov, B. T., Seyidova, F.Sh., Basicity of a system of exponents with a piecewise linear phase in Morrey-type spaces, Turk. J. Math., 43 (2019), 1850-1866. DOI:10.1007/s00009-011-0135-7
  • Bilalov, B. T., The basis properties of power systems in Lp, Siberian Math. J., 47(1) (2016), 18-27. DOI:10.1007/s11202-006-0002-0
  • Bilalov, B. T., Guliyeva, F. A., A completeness criterion for a double power system with degenerate coe¢ cients, Siberian Math. J., 54(3) (2013), 419-424. DOI:10.1134/S0037446613030051
  • Huseynli, A. A., Mirzoyev, V. S., Quliyeva, A. A., On Basicity of the Perturbed System of Exponents in Morrey-Lebesgue Space, Azerbaijan Journal of Mathematics, 7 (2) (2017), 191-209.
  • Guliyeva, F. A., Sadigova, S. R., On Some Properties of Convolution in Morrey Type Spaces, Azerbaijan Journal of Mathematics, 8(1) (2018), 140-150.
  • Bilalov, B. T., Huseynli, A. A., El-Shabrawy S. R., Basis Properties of Trigonometric Systems in Weighted Morrey Spaces, Azerbaijan Journal of Mathematics, 9(2) (2019), 166-192.
  • Guliyeva, F. A., Sadigova, S. R., Bases of the perturbed system of exponents in generalized weighted Lebesgue space with a general weight, Afr. Mat., 28(5-6) (2017), 781-791. DOI:10.1007/s13370-017-0488-6
  • Bilalov, B. T., Gasymov, T. B., Guliyeva, A.A., On solvability of Riemann boundary value problem in Morrey-Hardy classes, Turk. J. of Math. 40(50) (2016), 1085-1101. DOI:10.3906/mat-1507-10
  • Burenkov, V. I., Tararykova, T. V., An analog of Young's inequality for convolutions of functions for general Morrey-type spaces, Proceedings of the Steklov Institute of Mathematics, 293(1) (2016), 107-126. DOI:10.1134/S0081543816040088
  • Bennett, C., Sharpley, R., Interpolation of Operators, Academic Press, 1988, 469 p.
  • Krein, S. G., Petunin, Yu. I., Semenov E. M., Interpolation of linear operators, Moscow, Nauka, 1978, 400 p. (in Russian)
  • Edwards, R., Fourier Series, v.2, Moscow, 1985. (in Russian)
  • Krepela, M., Convolution in rearrangement-invariant spaces defined in terms of oscillation and the maximal function, Journal of Analysis and its Applications, 33(4) (2014), 369-383. DOI:10.4171/ZAA/1517
  • Nursultanov, E., Tikhonov, S., Convolution inequalities in Lorentz spaces, J. Fourier Anal. Appl., 17(3) (2011), 486-505. DOI:10.1007/s00041-010-9159-9
  • O'Neil, R., Convolution operators and $L(p; q)$ spaces, Duke Math. J., 30(1) (1963), 129-142. DOI: 10.1215/S0012-7094-63-03015-1
  • Kwok-Pun, H., Approximation in vanishing rearrangement-invariant Morrey spaces and applications, Revista de la Real Academia de Ciencias Exactas, FÌsicas y Naturales. Serie A. Matematicas 113(4) (2019), 2999-3014. DOI: 10.1007/s13398-019-00668-7
  • Kokilashvili, V., Meskhi A., Rafeiro, H., Samko, S., Variable Exponent Lebesgue and Amalgam Spaces, Springer, Integral Operators in Non-Standard Function Spaces, 248(1) (2016). DOI:10.1007/978-3-319-21015-5
  • Kokilashvili, V., Meskhi, A., Rafeir, H., Samko, S., Variable Exponent Hölder, Morrey Campanato and Grand Spaces, Integral Operators in Non-Standard Function Spaces, Springer, 249(2) (2016). DOI:10.1007/978-3-319-21018-6

Some properties of convolution in symmetric spaces and approximate identity

Year 2021, Volume: 70 Issue: 2, 773 - 784, 31.12.2021
https://doi.org/10.31801/cfsuasmas.768848

Abstract

This paper deals with the symmetric space of functions and its subspace where continuous functions are dense is considered. Main properties of convolution which plays a vital role in harmonic analysis, as in other areas of mathematics are established in this space. Following the classical case, it is proved that the convolution can be approximated by linear combinations of shifts in a subspace of the considered space. An approximate identity for the convolution is also considered in that subspace.

References

  • Peetre, J., On the theory of $L^{p,\alpha}$ spaces, J. Funct. Anal., 4 (1964), 71-87. https://doi.org/10.1016/0022-1236(69)90022-6
  • Zorko, C. T., Morrey space, Proc. Of the Amer. Math. Society, 98 (4) (1986), 586-592. DOI: https://doi.org/10.1090/S0002-9939-1986-0861756-X
  • Ky, N. X., On approximation by trigonometric polynomials in $L^{p}_{u}$-spaces, Studia Sci. Math. Hungar, 28 (1993), 183-188. DOI:10.1515/gmj-2012-0043
  • Samko, N., Weighted hardy and singular operators in Morrey spaces, Journal of Math. Anal. and Appl., 350(1), (2009), 56-72. DOI:10.1016/j.jmaa.2008.09.021
  • Israfilov, D. M., Tozman, N. P., Approximation in Morrey-Smirnov classes, Azerb. J. of Math., 1(1), (2011), 99-113. DOI:10.3336/gm.40.1.09
  • Bilalov, B. T., Guliyeva, A. A., On basicity of exponential systems in Morrey-type spaces, Inter. J. of Math., 25(6) (2014), 10 pages. DOI:10.1142/S0129167X14500542
  • Bilalov, B. T., The basis property of a perturbed system of exponentials in Morrey-type spaces, Siberian Math. J., 60(2) (2019), 249-271. DOI:https://doi.org/10.33048/smzh.2019.60.206
  • Bilalov, B. T., Seyidova, F.Sh., Basicity of a system of exponents with a piecewise linear phase in Morrey-type spaces, Turk. J. Math., 43 (2019), 1850-1866. DOI:10.1007/s00009-011-0135-7
  • Bilalov, B. T., The basis properties of power systems in Lp, Siberian Math. J., 47(1) (2016), 18-27. DOI:10.1007/s11202-006-0002-0
  • Bilalov, B. T., Guliyeva, F. A., A completeness criterion for a double power system with degenerate coe¢ cients, Siberian Math. J., 54(3) (2013), 419-424. DOI:10.1134/S0037446613030051
  • Huseynli, A. A., Mirzoyev, V. S., Quliyeva, A. A., On Basicity of the Perturbed System of Exponents in Morrey-Lebesgue Space, Azerbaijan Journal of Mathematics, 7 (2) (2017), 191-209.
  • Guliyeva, F. A., Sadigova, S. R., On Some Properties of Convolution in Morrey Type Spaces, Azerbaijan Journal of Mathematics, 8(1) (2018), 140-150.
  • Bilalov, B. T., Huseynli, A. A., El-Shabrawy S. R., Basis Properties of Trigonometric Systems in Weighted Morrey Spaces, Azerbaijan Journal of Mathematics, 9(2) (2019), 166-192.
  • Guliyeva, F. A., Sadigova, S. R., Bases of the perturbed system of exponents in generalized weighted Lebesgue space with a general weight, Afr. Mat., 28(5-6) (2017), 781-791. DOI:10.1007/s13370-017-0488-6
  • Bilalov, B. T., Gasymov, T. B., Guliyeva, A.A., On solvability of Riemann boundary value problem in Morrey-Hardy classes, Turk. J. of Math. 40(50) (2016), 1085-1101. DOI:10.3906/mat-1507-10
  • Burenkov, V. I., Tararykova, T. V., An analog of Young's inequality for convolutions of functions for general Morrey-type spaces, Proceedings of the Steklov Institute of Mathematics, 293(1) (2016), 107-126. DOI:10.1134/S0081543816040088
  • Bennett, C., Sharpley, R., Interpolation of Operators, Academic Press, 1988, 469 p.
  • Krein, S. G., Petunin, Yu. I., Semenov E. M., Interpolation of linear operators, Moscow, Nauka, 1978, 400 p. (in Russian)
  • Edwards, R., Fourier Series, v.2, Moscow, 1985. (in Russian)
  • Krepela, M., Convolution in rearrangement-invariant spaces defined in terms of oscillation and the maximal function, Journal of Analysis and its Applications, 33(4) (2014), 369-383. DOI:10.4171/ZAA/1517
  • Nursultanov, E., Tikhonov, S., Convolution inequalities in Lorentz spaces, J. Fourier Anal. Appl., 17(3) (2011), 486-505. DOI:10.1007/s00041-010-9159-9
  • O'Neil, R., Convolution operators and $L(p; q)$ spaces, Duke Math. J., 30(1) (1963), 129-142. DOI: 10.1215/S0012-7094-63-03015-1
  • Kwok-Pun, H., Approximation in vanishing rearrangement-invariant Morrey spaces and applications, Revista de la Real Academia de Ciencias Exactas, FÌsicas y Naturales. Serie A. Matematicas 113(4) (2019), 2999-3014. DOI: 10.1007/s13398-019-00668-7
  • Kokilashvili, V., Meskhi A., Rafeiro, H., Samko, S., Variable Exponent Lebesgue and Amalgam Spaces, Springer, Integral Operators in Non-Standard Function Spaces, 248(1) (2016). DOI:10.1007/978-3-319-21015-5
  • Kokilashvili, V., Meskhi, A., Rafeir, H., Samko, S., Variable Exponent Hölder, Morrey Campanato and Grand Spaces, Integral Operators in Non-Standard Function Spaces, Springer, 249(2) (2016). DOI:10.1007/978-3-319-21018-6
There are 25 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Chingiz Hashimov This is me 0000-0002-0003-5364

Javad Asadzadeh 0000-0003-0758-1875

Publication Date December 31, 2021
Submission Date July 15, 2020
Acceptance Date April 9, 2021
Published in Issue Year 2021 Volume: 70 Issue: 2

Cite

APA Hashimov, C., & Asadzadeh, J. (2021). Some properties of convolution in symmetric spaces and approximate identity. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(2), 773-784. https://doi.org/10.31801/cfsuasmas.768848
AMA Hashimov C, Asadzadeh J. Some properties of convolution in symmetric spaces and approximate identity. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2021;70(2):773-784. doi:10.31801/cfsuasmas.768848
Chicago Hashimov, Chingiz, and Javad Asadzadeh. “Some Properties of Convolution in Symmetric Spaces and Approximate Identity”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 2 (December 2021): 773-84. https://doi.org/10.31801/cfsuasmas.768848.
EndNote Hashimov C, Asadzadeh J (December 1, 2021) Some properties of convolution in symmetric spaces and approximate identity. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 2 773–784.
IEEE C. Hashimov and J. Asadzadeh, “Some properties of convolution in symmetric spaces and approximate identity”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 2, pp. 773–784, 2021, doi: 10.31801/cfsuasmas.768848.
ISNAD Hashimov, Chingiz - Asadzadeh, Javad. “Some Properties of Convolution in Symmetric Spaces and Approximate Identity”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/2 (December 2021), 773-784. https://doi.org/10.31801/cfsuasmas.768848.
JAMA Hashimov C, Asadzadeh J. Some properties of convolution in symmetric spaces and approximate identity. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:773–784.
MLA Hashimov, Chingiz and Javad Asadzadeh. “Some Properties of Convolution in Symmetric Spaces and Approximate Identity”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 2, 2021, pp. 773-84, doi:10.31801/cfsuasmas.768848.
Vancouver Hashimov C, Asadzadeh J. Some properties of convolution in symmetric spaces and approximate identity. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(2):773-84.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.