Research Article
BibTex RIS Cite
Year 2022, Volume: 71 Issue: 1, 153 - 164, 30.03.2022
https://doi.org/10.31801/cfsuasmas.704435

Abstract

References

  • Aydin, F. T., Hyperbolic Fibonacci sequence, Universal Journal of Mathematics and Applications, 2(2) (2019), 59-64. https://doi.org/10.32323/ujma.473514
  • Bala, A., Verma, V., Some properties of bi-variate bi-periodic Lucas polynomials, Annals of the Romanian Society for Cell Biology, 25(4) (2021), 8778-8784. https://www.annalsofrscb.ro/index.php/journal/article/view/3598.
  • Bilgici, G., Two generalizations of Lucas sequence, Applied Mathematics and Computation, 245 (2014), 526-538. https://doi.org/10.1016/j.amc.2014.07.111.
  • Catoni, F., Boccaletti, R., Cannata, R., Catoni, V., Nichelatti, E., Zampatti, P., The Mathematics of Minkowski Space-Time, Birkhauser, Basel, 2008.
  • Dikmen, C.M., Hyperbolic Jacobsthal Numbers, Asian Research Journal of Mathematics, (2019) 1-9. https://doi.org/10.9734/arjom/2019/v15i430153
  • Edson, M., Yayenie, O., A new generalization of Fibonacci sequences and extended Binet’s formula, Integers, 9(A48) (2009), 639-654. https://doi.org/10.1515/INTEG.2009.051
  • Gargoubi, H., Kossentini, S., f-algebra structure on hyperbolic numbers, Adv. Appl. Clifford Algebr., 26(4) (2016), 1211-1233. https://doi.org/10.1007/s00006-016-0644-3
  • Koshy, T., Fibonacci and Lucas Numbers with Applications, John Wiley and Sons Inc, NY, 2001.
  • Khadjiev, D., Goksal Y., Applications of hyperbolic numbers to the invariant theory in two-dimensional pseudo-Euclidean space, Adv. Appl. Clifford Algebr., 26 (2016), 645-668. https://doi.org/10.1007/s00006-015-0627-9
  • Khrennikov, A., Segre, G., An Introduction to Hyperbolic Analysis, arxiv, 2005. http://arxiv.org/abs/math-ph/0507053v2.
  • Motter, A. E, Rosa, A. F., Hyperbolic calculus, Adv. Appl. Clifford Algebr., 8(1) (1998), 109-128.
  • Sobczyk, G., The hyperbolic number plane, The College Mathematics Journal, 26(4) (1995), 268-280.
  • Soykan, Y., On hyperbolic numbers with generalized Fibonacci numbers components, preprint, (2019).
  • Soykan, Y., Gocen, M., Properties of hyperbolic generalized Pell numbers, Notes on Number Theory and Discrete Mathematics, 26(4) (2020), 136-153. https://doi.org/10.7546/nntdm.2020.26.4.136-153
  • Tan, E., Leung, H.H., Some basic properties of the generalized bi-periodic Fibonacci and Lucas sequences, Advances in Difference Equations, 2020.1 (2020), 1-11. https://doi.org/10.1186/s13662-020-2507-4
  • Tasyurdu, Y., Hyperbolic Tribonacci and Tribonacci-Lucas sequences, International Journal of Mathematical Analysis, 13(12) (2019), 565-572. https://doi.org/10.12988/ijma.2019.91167
  • Verma, V., Bala, A., On properties of generalized bi-variate bi-periodic Fibonacci polynomials, International Journal of Advanced Science and Technology, 29(3) (2020), 8065-8072.
  • Yayenie, O., A note on generalized Fibonacci sequence, Applied Mathematics and Computation, 217(12) (2011), 5603-5611. https://doi.org/10.1016/j.amc.2010.12.038

Split complex bi-periodic Fibonacci and Lucas numbers

Year 2022, Volume: 71 Issue: 1, 153 - 164, 30.03.2022
https://doi.org/10.31801/cfsuasmas.704435

Abstract

The initial idea of this paper is to investigate the split complex bi-periodic Fibonacci and Lucas numbers by using SCFLN now on. We try to show some properties of SCFLN by taking into account the properties of the split complex numbers. Then, we present interesting relationships between SCFLN.

References

  • Aydin, F. T., Hyperbolic Fibonacci sequence, Universal Journal of Mathematics and Applications, 2(2) (2019), 59-64. https://doi.org/10.32323/ujma.473514
  • Bala, A., Verma, V., Some properties of bi-variate bi-periodic Lucas polynomials, Annals of the Romanian Society for Cell Biology, 25(4) (2021), 8778-8784. https://www.annalsofrscb.ro/index.php/journal/article/view/3598.
  • Bilgici, G., Two generalizations of Lucas sequence, Applied Mathematics and Computation, 245 (2014), 526-538. https://doi.org/10.1016/j.amc.2014.07.111.
  • Catoni, F., Boccaletti, R., Cannata, R., Catoni, V., Nichelatti, E., Zampatti, P., The Mathematics of Minkowski Space-Time, Birkhauser, Basel, 2008.
  • Dikmen, C.M., Hyperbolic Jacobsthal Numbers, Asian Research Journal of Mathematics, (2019) 1-9. https://doi.org/10.9734/arjom/2019/v15i430153
  • Edson, M., Yayenie, O., A new generalization of Fibonacci sequences and extended Binet’s formula, Integers, 9(A48) (2009), 639-654. https://doi.org/10.1515/INTEG.2009.051
  • Gargoubi, H., Kossentini, S., f-algebra structure on hyperbolic numbers, Adv. Appl. Clifford Algebr., 26(4) (2016), 1211-1233. https://doi.org/10.1007/s00006-016-0644-3
  • Koshy, T., Fibonacci and Lucas Numbers with Applications, John Wiley and Sons Inc, NY, 2001.
  • Khadjiev, D., Goksal Y., Applications of hyperbolic numbers to the invariant theory in two-dimensional pseudo-Euclidean space, Adv. Appl. Clifford Algebr., 26 (2016), 645-668. https://doi.org/10.1007/s00006-015-0627-9
  • Khrennikov, A., Segre, G., An Introduction to Hyperbolic Analysis, arxiv, 2005. http://arxiv.org/abs/math-ph/0507053v2.
  • Motter, A. E, Rosa, A. F., Hyperbolic calculus, Adv. Appl. Clifford Algebr., 8(1) (1998), 109-128.
  • Sobczyk, G., The hyperbolic number plane, The College Mathematics Journal, 26(4) (1995), 268-280.
  • Soykan, Y., On hyperbolic numbers with generalized Fibonacci numbers components, preprint, (2019).
  • Soykan, Y., Gocen, M., Properties of hyperbolic generalized Pell numbers, Notes on Number Theory and Discrete Mathematics, 26(4) (2020), 136-153. https://doi.org/10.7546/nntdm.2020.26.4.136-153
  • Tan, E., Leung, H.H., Some basic properties of the generalized bi-periodic Fibonacci and Lucas sequences, Advances in Difference Equations, 2020.1 (2020), 1-11. https://doi.org/10.1186/s13662-020-2507-4
  • Tasyurdu, Y., Hyperbolic Tribonacci and Tribonacci-Lucas sequences, International Journal of Mathematical Analysis, 13(12) (2019), 565-572. https://doi.org/10.12988/ijma.2019.91167
  • Verma, V., Bala, A., On properties of generalized bi-variate bi-periodic Fibonacci polynomials, International Journal of Advanced Science and Technology, 29(3) (2020), 8065-8072.
  • Yayenie, O., A note on generalized Fibonacci sequence, Applied Mathematics and Computation, 217(12) (2011), 5603-5611. https://doi.org/10.1016/j.amc.2010.12.038
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Nazmiye Yılmaz 0000-0002-7302-2281

Publication Date March 30, 2022
Submission Date March 16, 2020
Acceptance Date August 18, 2021
Published in Issue Year 2022 Volume: 71 Issue: 1

Cite

APA Yılmaz, N. (2022). Split complex bi-periodic Fibonacci and Lucas numbers. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(1), 153-164. https://doi.org/10.31801/cfsuasmas.704435
AMA Yılmaz N. Split complex bi-periodic Fibonacci and Lucas numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. March 2022;71(1):153-164. doi:10.31801/cfsuasmas.704435
Chicago Yılmaz, Nazmiye. “Split Complex Bi-Periodic Fibonacci and Lucas Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71, no. 1 (March 2022): 153-64. https://doi.org/10.31801/cfsuasmas.704435.
EndNote Yılmaz N (March 1, 2022) Split complex bi-periodic Fibonacci and Lucas numbers. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71 1 153–164.
IEEE N. Yılmaz, “Split complex bi-periodic Fibonacci and Lucas numbers”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 71, no. 1, pp. 153–164, 2022, doi: 10.31801/cfsuasmas.704435.
ISNAD Yılmaz, Nazmiye. “Split Complex Bi-Periodic Fibonacci and Lucas Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71/1 (March 2022), 153-164. https://doi.org/10.31801/cfsuasmas.704435.
JAMA Yılmaz N. Split complex bi-periodic Fibonacci and Lucas numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71:153–164.
MLA Yılmaz, Nazmiye. “Split Complex Bi-Periodic Fibonacci and Lucas Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 71, no. 1, 2022, pp. 153-64, doi:10.31801/cfsuasmas.704435.
Vancouver Yılmaz N. Split complex bi-periodic Fibonacci and Lucas numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71(1):153-64.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.