Research Article
BibTex RIS Cite

Associated curves from a different point of view in $E^3$

Year 2022, Volume: 71 Issue: 3, 826 - 845, 30.09.2022
https://doi.org/10.31801/cfsuasmas.1026359

Abstract

In this paper, tangent, principal normal and binormal wise associated curves are defined such that each of these vectors of any given curve lies on the osculating, normal and rectifying plane of its partner, respectively. For each associated curve, a new moving frame and the corresponding curvatures are formulated in terms of Frenet frame vectors. In addition to this, the possible solutions for distance functions between the curve and its associated mate are discussed. In particular, it is seen that the involute curves belong to the family of tangent associated curves in general and the Bertrand and the Mannheim curves belong to the principal normal associated curves. Finally, as an application, we present some examples and map a given curve together with its partner and its corresponding moving frame.

Supporting Institution

None

Project Number

None

Thanks

Thank you in advance for your valuable time spent on our manuscript.

References

  • Bertrand, J., Memoire sur la th´eorie des courbes `a double courbure, Journal de Mathematiques Pures et Appliquees 15 (1850), 332–350.
  • Mannheim, A., De l’emploi de la courbe repr´esentative de la surface des normales principales d’une courbe gauche pour la d´emonstration de propri´et´es relatives `a cette courbure, C.R. Comptes Rendus des S´eances de l’Acad´emie des Sciences, 86 (1878), 1254-1256.
  • O’Neill, B., Elementary differential geometry, Academic Press Inc., New York, 1966.
  • Liu, H., Wang, F., Mannheim partner curves in 3-space, Journal of Geometry 88(1-2) (2008), 120-126. https://doi.org/10.1007/s00022-007-1949-0
  • Menninger, T., Characterization of the slant helix as successor curve of the general helix, International Electronic Journal of Geometry, 7(2) (2014), 84-91. https://doi.org/10.36890/iejg.593986
  • Kazaz, M., Uğurlu, H. H., Önder, M., Oral, S., Bertrand partner D- curves in the Euclidean 3-space $E^3$, Afyon Kocatepe University Journal of Science and Engineering, 16(1) (2016), 76-83. https://doi.org/10.5578/fmbd.25270
  • Kaya, O., Önder, M., New partner curves in the Euclidean 3-space, International Journal of Geometry 6(2) (2017), 41-50.
  • Kaya, O., Önder, M., C-partner curves and their applications, Differential Geometry-Dynamical Systems 19 (2017), 64-74.
  • Körpınar, T., Sarıaydın, M. T., Turhan, E., Associated curves according to Bishop frame in Euclidean 3 space, Advanced Modeling and Optimization, 15(3) (2013), 713-717.
  • Masal, M., Azak, A. Z., Mannheim B-curves in the Euclidean 3-space $E^3$, Kuwait Journal of Science, 44(1) (2017), 36-41.
  • Yılmaz, B., Has, A., Alternative partner curves in the Euclidean 3-space, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1) (2020), 900-909. https://doi.org/10.31801/cfsuasmas.538177
  • Choi, J. H., Kim, Y. H., Associated curves of a Frenet curve and their applications, Applied Mathematics and Computation, 218(18) (2012), 9116-9124. https://doi.org/10.1016/j.amc.2012.02.064
  • Şahiner, B., Direction curves of principal normal indicatrix of a curve, Journal of Technical Sciences, 8(2) (2018), 46-54.
  • Şahiner, B., Direction curves of tangent indicatrix of a curve, Applied Mathematics and Computation, 343 (2019), 273-284. https://doi.org/10.1016/j.amc.2018.09.021
Year 2022, Volume: 71 Issue: 3, 826 - 845, 30.09.2022
https://doi.org/10.31801/cfsuasmas.1026359

Abstract

Project Number

None

References

  • Bertrand, J., Memoire sur la th´eorie des courbes `a double courbure, Journal de Mathematiques Pures et Appliquees 15 (1850), 332–350.
  • Mannheim, A., De l’emploi de la courbe repr´esentative de la surface des normales principales d’une courbe gauche pour la d´emonstration de propri´et´es relatives `a cette courbure, C.R. Comptes Rendus des S´eances de l’Acad´emie des Sciences, 86 (1878), 1254-1256.
  • O’Neill, B., Elementary differential geometry, Academic Press Inc., New York, 1966.
  • Liu, H., Wang, F., Mannheim partner curves in 3-space, Journal of Geometry 88(1-2) (2008), 120-126. https://doi.org/10.1007/s00022-007-1949-0
  • Menninger, T., Characterization of the slant helix as successor curve of the general helix, International Electronic Journal of Geometry, 7(2) (2014), 84-91. https://doi.org/10.36890/iejg.593986
  • Kazaz, M., Uğurlu, H. H., Önder, M., Oral, S., Bertrand partner D- curves in the Euclidean 3-space $E^3$, Afyon Kocatepe University Journal of Science and Engineering, 16(1) (2016), 76-83. https://doi.org/10.5578/fmbd.25270
  • Kaya, O., Önder, M., New partner curves in the Euclidean 3-space, International Journal of Geometry 6(2) (2017), 41-50.
  • Kaya, O., Önder, M., C-partner curves and their applications, Differential Geometry-Dynamical Systems 19 (2017), 64-74.
  • Körpınar, T., Sarıaydın, M. T., Turhan, E., Associated curves according to Bishop frame in Euclidean 3 space, Advanced Modeling and Optimization, 15(3) (2013), 713-717.
  • Masal, M., Azak, A. Z., Mannheim B-curves in the Euclidean 3-space $E^3$, Kuwait Journal of Science, 44(1) (2017), 36-41.
  • Yılmaz, B., Has, A., Alternative partner curves in the Euclidean 3-space, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1) (2020), 900-909. https://doi.org/10.31801/cfsuasmas.538177
  • Choi, J. H., Kim, Y. H., Associated curves of a Frenet curve and their applications, Applied Mathematics and Computation, 218(18) (2012), 9116-9124. https://doi.org/10.1016/j.amc.2012.02.064
  • Şahiner, B., Direction curves of principal normal indicatrix of a curve, Journal of Technical Sciences, 8(2) (2018), 46-54.
  • Şahiner, B., Direction curves of tangent indicatrix of a curve, Applied Mathematics and Computation, 343 (2019), 273-284. https://doi.org/10.1016/j.amc.2018.09.021
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Süleyman Şenyurt 0000-0003-1097-5541

Davut Canlı 0000-0003-0405-9969

Kebire Hilal Ayvacı 0000-0002-5114-5475

Project Number None
Publication Date September 30, 2022
Submission Date November 20, 2021
Acceptance Date April 2, 2022
Published in Issue Year 2022 Volume: 71 Issue: 3

Cite

APA Şenyurt, S., Canlı, D., & Ayvacı, K. H. (2022). Associated curves from a different point of view in $E^3$. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(3), 826-845. https://doi.org/10.31801/cfsuasmas.1026359
AMA Şenyurt S, Canlı D, Ayvacı KH. Associated curves from a different point of view in $E^3$. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2022;71(3):826-845. doi:10.31801/cfsuasmas.1026359
Chicago Şenyurt, Süleyman, Davut Canlı, and Kebire Hilal Ayvacı. “Associated Curves from a Different Point of View in $E^3$”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71, no. 3 (September 2022): 826-45. https://doi.org/10.31801/cfsuasmas.1026359.
EndNote Şenyurt S, Canlı D, Ayvacı KH (September 1, 2022) Associated curves from a different point of view in $E^3$. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71 3 826–845.
IEEE S. Şenyurt, D. Canlı, and K. H. Ayvacı, “Associated curves from a different point of view in $E^3$”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 71, no. 3, pp. 826–845, 2022, doi: 10.31801/cfsuasmas.1026359.
ISNAD Şenyurt, Süleyman et al. “Associated Curves from a Different Point of View in $E^3$”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71/3 (September 2022), 826-845. https://doi.org/10.31801/cfsuasmas.1026359.
JAMA Şenyurt S, Canlı D, Ayvacı KH. Associated curves from a different point of view in $E^3$. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71:826–845.
MLA Şenyurt, Süleyman et al. “Associated Curves from a Different Point of View in $E^3$”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 71, no. 3, 2022, pp. 826-45, doi:10.31801/cfsuasmas.1026359.
Vancouver Şenyurt S, Canlı D, Ayvacı KH. Associated curves from a different point of view in $E^3$. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71(3):826-45.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.