Research Article
BibTex RIS Cite
Year 2022, Volume: 71 Issue: 3, 666 - 681, 30.09.2022
https://doi.org/10.31801/cfsuasmas.989344

Abstract

References

  • Ahmad, I., Some generalizations of Bernstein type inequalities, Int. J. Modern Math. Sci., 4(3) (2012), 133-138.
  • Aziz, A., A refinement of an inequality of S. Bernstein, J. Math. Anal. Appl., 144 (1989), 226-235. https://doi.org/10.1016/0022-247X(89)90370-3
  • Aziz, A., Rather, N. A., New $L^q$ inequalities for polynomials, Mathematical Inequalities and Applications, 2 (1998), 177-191.
  • Bernstein, S.N., EMales Et La Meilleure Approximation Des Fonctions Analytiques D’une Variable REElle, Gauthier-Villars, Paris, 1926.
  • Dewan, K. K., Kaur, J., Mir, A., Inequalities for the derivative of a polynomial, J. Math. Anal. Appl., 269 (2002), 489-499. https://doi.org/10.1016/S0022-247X(02)00030-6
  • Frappier, C., Rahman, Q. I., Ruscheweyh, St., New inequalities for polynomials, Trans. Amer. Math. Soc., 288 (1985), 69-99. https://doi.org/10.2307/2000427
  • Gulzar, M. H., Inequalities for a polynomial and its derivative, International Journal of Mathematical Archive, 3(2) (2012), 528-533.
  • Lax, P. D., Proof of a conjecture of P. Erdos on the derivatives of a polynomial, Bull. Amer. Math. Soc., 50 (1944), 509-513.
  • Marden, M., Geometry of Polynomials, Second Edition, Mathematical Surveys, Amer. Math. Soc. Providence R.I. 1996.
  • Milovanovic, G. V., Mitrinovi´c, D. S., Rassias, Th.M., Topics in Polynomials Extremal Problems, Inequalities, Zeros, World Scientific, Singapore, 1994.
  • Polya, G., Szego, G., Aufgaben und Lehrsatze aus der Analysis, Springer, Berlin, 1925.
  • Rahman, Q. I., Schmeisser, G., Analytic Theory of Polynomials, Oxford University Press, New York, 2002.
  • Rather, N. A., Shah, M. A., On the derivative of a polynomial, Applied Mathematics, 3 (2012), 746-749. http://dx.doi.org/10.4236/am.2012.37110
  • Riesz, M., Eine trigonometrische interpolation formel und einige Ungleichung fur Polynome, Jahresber. Dtsch. Math.Verein, 23 (1914), 354-368.
  • Riesz, M., Über einen Sat’z des Herrn Serge Bernstein, Acta Math., 40 (1916), 337-347.

On the maximum modulus of a complex polynomial

Year 2022, Volume: 71 Issue: 3, 666 - 681, 30.09.2022
https://doi.org/10.31801/cfsuasmas.989344

Abstract

In this paper we impose distinct restrictions on the moduli of the zeros of p(z)=nv=0avzvp(z)=∑v=0navzv and investigate the dependence of p(Rz)p(σz)‖p(Rz)−p(σz)‖, R>σ1R>σ≥1 on Mα and Mα+πMα+π, where Mα=max1kn|p(ei(α+2kπ)/n)|Mα=max1≤k≤n|p(ei(α+2kπ)/n)| and on certain coefficients of p(z)p(z). This paper comprises several results, which in particular yields some classical polynomial inequalities as special cases. Moreover, the problem of estimating p(1wn)p(1−wn), $0<w\leq$ given $p(1)=0$ is considered.

References

  • Ahmad, I., Some generalizations of Bernstein type inequalities, Int. J. Modern Math. Sci., 4(3) (2012), 133-138.
  • Aziz, A., A refinement of an inequality of S. Bernstein, J. Math. Anal. Appl., 144 (1989), 226-235. https://doi.org/10.1016/0022-247X(89)90370-3
  • Aziz, A., Rather, N. A., New $L^q$ inequalities for polynomials, Mathematical Inequalities and Applications, 2 (1998), 177-191.
  • Bernstein, S.N., EMales Et La Meilleure Approximation Des Fonctions Analytiques D’une Variable REElle, Gauthier-Villars, Paris, 1926.
  • Dewan, K. K., Kaur, J., Mir, A., Inequalities for the derivative of a polynomial, J. Math. Anal. Appl., 269 (2002), 489-499. https://doi.org/10.1016/S0022-247X(02)00030-6
  • Frappier, C., Rahman, Q. I., Ruscheweyh, St., New inequalities for polynomials, Trans. Amer. Math. Soc., 288 (1985), 69-99. https://doi.org/10.2307/2000427
  • Gulzar, M. H., Inequalities for a polynomial and its derivative, International Journal of Mathematical Archive, 3(2) (2012), 528-533.
  • Lax, P. D., Proof of a conjecture of P. Erdos on the derivatives of a polynomial, Bull. Amer. Math. Soc., 50 (1944), 509-513.
  • Marden, M., Geometry of Polynomials, Second Edition, Mathematical Surveys, Amer. Math. Soc. Providence R.I. 1996.
  • Milovanovic, G. V., Mitrinovi´c, D. S., Rassias, Th.M., Topics in Polynomials Extremal Problems, Inequalities, Zeros, World Scientific, Singapore, 1994.
  • Polya, G., Szego, G., Aufgaben und Lehrsatze aus der Analysis, Springer, Berlin, 1925.
  • Rahman, Q. I., Schmeisser, G., Analytic Theory of Polynomials, Oxford University Press, New York, 2002.
  • Rather, N. A., Shah, M. A., On the derivative of a polynomial, Applied Mathematics, 3 (2012), 746-749. http://dx.doi.org/10.4236/am.2012.37110
  • Riesz, M., Eine trigonometrische interpolation formel und einige Ungleichung fur Polynome, Jahresber. Dtsch. Math.Verein, 23 (1914), 354-368.
  • Riesz, M., Über einen Sat’z des Herrn Serge Bernstein, Acta Math., 40 (1916), 337-347.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Shabir Malik 0000-0002-6906-6513

Ashish Kumar 0000-0002-7423-4403

Publication Date September 30, 2022
Submission Date September 1, 2021
Acceptance Date February 4, 2022
Published in Issue Year 2022 Volume: 71 Issue: 3

Cite

APA Malik, S., & Kumar, A. (2022). On the maximum modulus of a complex polynomial. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(3), 666-681. https://doi.org/10.31801/cfsuasmas.989344
AMA Malik S, Kumar A. On the maximum modulus of a complex polynomial. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2022;71(3):666-681. doi:10.31801/cfsuasmas.989344
Chicago Malik, Shabir, and Ashish Kumar. “On the Maximum Modulus of a Complex Polynomial”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71, no. 3 (September 2022): 666-81. https://doi.org/10.31801/cfsuasmas.989344.
EndNote Malik S, Kumar A (September 1, 2022) On the maximum modulus of a complex polynomial. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71 3 666–681.
IEEE S. Malik and A. Kumar, “On the maximum modulus of a complex polynomial”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 71, no. 3, pp. 666–681, 2022, doi: 10.31801/cfsuasmas.989344.
ISNAD Malik, Shabir - Kumar, Ashish. “On the Maximum Modulus of a Complex Polynomial”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71/3 (September 2022), 666-681. https://doi.org/10.31801/cfsuasmas.989344.
JAMA Malik S, Kumar A. On the maximum modulus of a complex polynomial. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71:666–681.
MLA Malik, Shabir and Ashish Kumar. “On the Maximum Modulus of a Complex Polynomial”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 71, no. 3, 2022, pp. 666-81, doi:10.31801/cfsuasmas.989344.
Vancouver Malik S, Kumar A. On the maximum modulus of a complex polynomial. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71(3):666-81.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.